HomeMy WebLinkAbout5/1/2013 - AGREEMENTS (12) i
Palm Springs International Airport
Terminal Apron Rehabilitation and
Taxiway "G" Reconstruction Project
Hydrology Report
March 2013
This report has been prepared under the direction of the following Registered Civil Engineer.
The undersigned attests to the technical information contained herein and the qualifications of
any technical specialist providing engineering data upon which recommendations, conclusions,
and decisions are based:
_____________________________
Christopher J. Swonke, P.E.
Submitted by
Parsons Brinckerhoff
451 East Vanderbilt Way, Suite 200
San Bernardino, California 92408
ii
TABLE OF CONTENTS
1.0 INTRODUCTION
2.0 PURPOSE
3.0 CRITERIA
4.0 SITE LAYOUT AND CONSIDERATIONS
5.0 SITE CONSTRAINTS
6.0 STORMWATER TREATMENT STRATEGY
7.0 METHODOLOGY
8.0 RESULTS
APPENDICES
A REFERENCE MATERIAL
B RATIONAL METHOD SUPPORTING ANALYSIS
C INLET CALCULATIONS
D HYDROLOGY MAP
1.0 INTRODUCTION
Palm Springs International Airport is located south of Interstate 10 in the City of Palm
Springs, Riverside County, California. The airport covers 940 acres of land adjacent to
the Whitewater River wash. The site is in the Whitewater River watershed where annual
rainfall is approximately 5 inches.
The proposed design project is a rehabilitation and reconstruction project to remove and
replace the terminal apron and resurface Taxiway "G". There will be no change to the
impervious footprint and the majority of the pavement area will be replaced or resurfaced
at existing line and grade.
The project site is located approximately 400 ft above sea level in the Coachella Valley.
Runoff from the project site and adjacent areas flow into existing storm drain
infrastructure and terminates at an on-site retention basin. Gutters and ridgelines are
used to direct sheet flow to the south and east. Eight drop inlets and four trench drains
on the project site intercept and convey runoff to a 54 inch storm drain main line. A fuel
interceptor treats all runoff from the apron area prior to reaching the basin.
Natural drainage courses exist immediately adjacent and downstream from the retention
basin. When flow exceeds the storage capacity of the infiltration basin, a master planned
storm drain will convey runoff east down Ramon Rd via line 34 (as identified by
Riverside County) to the Whitewater River wash. The Whitewater River is tributary to the
endorheic Salton Sea.
Figure 1.1 USGS Map; project area shown in red.
The Hydrologic Soils Group Map in the Riverside County Flood Control and Water
Conservation District (RCFC&WCD) Hydrology Manual illustrates that soils group A is
dominant throughout the site. Hydrologic soil group A is characterized by high infiltration
rates even when thoroughly wetted. They consist chiefly of deep, well to excessively
drained sands or gravels and have a high rate of water transmission. As reported by the
Natural Resource Conservation Service web soil survey, Myoma fine sand is the soil
type prevalent within the project boundary. The characterization of Myoma as sand and
fine sand is consistent with the geotechnical report by RMA group (11/2012) which found
poorly graded sand or silty sand to a depth of 16.5 feet for the two samples taken at that
depth. Saturated hydraulic conductivity (Ksat) is estimated to range from 5.95 to 19.98
in/hr. The type of cover on the project site is most closely matched with poor quality
Chaparrel, Narrowleaf. The pervious area infiltration rate for AMC I is estimated to be
0.74 inches/hour.
According to the 2008-2010 Integrated Report and Clean Water Act 303(d) List, the
immediate area around the project site is not assessed or impaired. Impaired waters
begin with the Coachella Valley Storm Water Channel approximately 14 miles
downstream. The existing oil-water separator and infiltration basin are recommended
BMPs and are used to treat chemical and biological pollutants. A WQMP was developed
for this project and should be referenced for complete information on the impairments
and treatment.
2.0 PURPOSE
The results of this study verify the effectiveness of the existing drainage system. The
analysis will be used to ensure that storm runoff will not impede operations by not
impounding pavements or encroaching on building pads in post-construction. This report
will present the baseline rational method calculations for the 2-year, 10-year and 100-
year rainfall conditions to demonstrate proper site drainage. Inlet capacities will be
evaluated to verify the grading of the site has no risk of pavement or structural
inundation.
3.0 CRITERIA
Stormwater management facilities must be sized to safely pass the 100 year storm
event. Given the magnitude of the 100-year storm event, it is not reasonable to size all
infrastructure based on the volume of runoff produced but rather to size secondary
overflow systems to accommodate the peak flow rate. At a minimum, 100 year storm
events will not inundate any structures.
Per FAA requirements, a 10-year storm event will not cause impoundment to airfield
pavement. In most cases, this means that water depth should not exceed 4 inches
during the event. Any remaining on-site standing water should pose no threat to air
navigation and will have a draw down time that does not exceed 24 hours.
All water runoff will be subject to a Water Quality Management Plan (WQMP). The
WQMP will verify that runoff meets quality and quantity constraints utilizing existing on-
site Best Management Practices (BMPs).
4.0 SITE LAYOUT AND CONSIDERATIONS
The project site can be broken down into two main areas: the concourse apron area and
the Taxiway "G" area. The concourse apron area utilizes the aforementioned storm drain
system and will be discussed at length in this report.
The Taxiway "G" area is not a part of this report due to its past performance and runoff
conditions. Runoff from the taxiway surface flows to either off-site storm drain
infrastructure or to an on-site infiltration area. The on-site infiltration area affected by
Taxiway "G" runoff is to the southeast between Taxiways "W", "W-3" and "H". This area
is sumped by several feet to where it's reasonable to assume it collects all runoff for
nearly any storm condition. Observed past performance is consistent with this analysis.
The concourse apron area is divided into four subareas following four unique drainage
paths. Each subarea is tributary to the same 54 inch storm drain main line, oil-water
separator and 244,000 cubic foot infiltration basin. Additional runoff from adjacent areas
(including the airfield) also contribute flow to the storm drain system and water treatment
BMPs. Some additional flow follows natural drainage channels directly to the infiltration
basin. Logically, the total contribution to the oil-water separator and infiltration basin will
be considered. See the Hydrology exhibit in Appendix D and project WQMP for more
information.
Table 4.1: Subarea Area Analysis
Subarea Impervious
Area (acres)
Pervious
Area (acres)
Percent
Impervious*
A 4.7 0 100%
B 9.0 0.6 93%
C 49.8 21.4 57%
D 9.9 0 100%
*Effective impervious areas are generally smaller than actual; a
storm averaged runoff coefficient for 100% impervious areas
will be set to 0.87, see reference material in Appendix A.
5.0 SITE CONSTRAINTS
The type of land use that comprises the project site and the immediate area is Aviation,
which is subject to sand blast, foreign object damage and vertical clearance regulation.
Sand blast refers to the small particulates that can be blown or sucked up by jet engines.
Any activity that incorporates the use of potentially engine blown particulates is
forbidden. Foreign object damage (FOD) refers to objects that can be blown or sucked
up by jet engines or helicopter blades and should be avoided in the Airport Operation
Area (AOA). Vertical clearance refers to the distance an object may impede into upright
space without interfering with airfield imaginary surfaces. Additionally, when retention is
adjacent to an active taxiway/runway, no objects can be over 3” above native soil
elevation, including outlets. Standing water in and around the AOA can be an issue due
to the avian fauna that can be attracted. Therefore, the maximum allowable drawdown
time is 24 hours.
Typically, a basin that impounds water without a drawdown pipe is not allowed on airport
property. However, given the high infiltration rate of the soils in the area, the 244,000
cubic foot basin and localized sump areas are capable of drawing down in the required
24-hour time limit. Since runoff rates and volumes will not be increased over the existing
conditions at any one of the storm drain inlets, the infiltration capacities will remain
sufficient for Riverside County hydrology and FAA standards.
6.0 STORMWATER TREATMENT STRATEGY
In adjacent taxiway and runway areas, runoff from the airfield sheet flows into infiltration
beds with a top layer of mined cobble. These natural channels provide a relatively large
surface area for infiltration and reduction of runoff. Natural infiltration is also effective at
transforming and reducing chemical and biological pollutants.
The storm drain and inline oil water separator drain and treat a tributary area of 139
acres. The storm drain is tributary to the basin with a total of 147 acres (some additional
inlets downstream of the separator). The separator has a maximum oil storage capacity
of 850 gallons and a half-full sediment capacity of 95 cubic feet. The system is
maintained yearly with full removal of oil and sediments. The oil-water separator treats
runoff from the Regional and Bono Concourse terminals, parking lot and other parts of
the airfield that may contain oil or other petroleum products.
According to Stoke's Law, oil removal rates will vary depending on the quantity of runoff
and type of mixed pollutants. The oil-water separator will assist in removing oil and fuel
particles that can coalesce into sizes 250 micrometers and larger in low flow conditions
(1 cfs). Based on a BMP design flow of 16.95 cfs, the oil-water separator will begin to
settle out fuel particles (specific gravity of 0.62) that coalesce into groups of 900
micrometers.
Roughly 600 feet downstream of the oil-water separator, the airport has installed a
244,000 cubic-foot stormwater infiltration basin. Per WQMP worksheet 1 calculations,
the basin has a design volume size of 127,000 cubic feet for all tributary area and as
such is oversized to improve infiltration. There is no low-flow outlet, meaning the entire 4
foot storage depth is infiltrated. As with the natural channels, the infiltration basin is
effective in treating chemical and biological pollutants.
See the project WQMP for further analysis of these BMPs.
7.0 METHODOLOGY
The Riverside County Rational Method was used to analyze the site per the
RCFC&WCD Hydrology Manual (1978). Advanced Engineering Software (AES)
HydroWIN 2012 was used for development of the rational method analysis (Appendix B).
Precipitation frequency estimates were taken from the RCFC&WCD Hydrology Manual,
plate D-4.1 (4 of 6). Data was for the Palm Springs area. The hydrologic soils group type
"A" was identified on plate C-1.35. The type of cover on the project site is most closely
matched with poor quality Chaparrel, Narrowleaf per plate D-5.5. Adjusting for AMC I
conditions per Plate D-5.7, the runoff index approximates to 52. By extrapolating from E-
6.2, the pervious area infiltration rate is estimated to be 0.74 inches/hour. Copies of the
plates used in this analysis are provided in Appendix A.
Drainage subareas are named alphabetically and contain numerical nodes that
correspond to their letter designation (i.e. subarea B contains 201, 202, etc.). Subarea H
drains into a drop inlet that is tributary to subarea A. Therefore subarea H is analyzed as
a part of subarea A. For site and drainage system information, see the hydrology map in
appendix D. Initial subarea flowlines were set at a maximum of roughly 150 feet to
improve the quality of the software analysis. Flowline lengths did not exceed 1000 feet.
The analysis for Subarea D is conservative. Inlets 403, 404 and 405 are outside of the
project area and a field survey is not available to conclude pipe slope. We have
assumed for the storm drain system between these nodes: 18 inch RCP and a 0.3%
slope. This represents a worst case scenario.
The existing conditions were analyzed to quantify the peak flow rate for the 2, 10 and
100 year storm events. Given the number of storm events, a storm averaged runoff
coefficient for 100% impervious areas was set at 0.87 ("commercial" designation per
AES design software). Please see "Runoff Coefficient Rationale" in Reference Material
Appendix A.
Inlet conditions for the 10 year and 100 year storm were analyzed using the Autocad
Land Desktop 2008 Rectangular Weir Calculator. Storm event, inlet perimeter length and
a weir coefficient of 0.61 were used to solve for the depth of flow over the grate. Using a
weir to model the depth of flow at the inlet is a conservative approach, because with this
method there is no flow draining into the inlet that would cause the water depth to drop.
Figure 2. Rectangular Weir Calculator; Inlet 406.
8.0 RESULTS
The results of the rational method analysis show that a 2-year storm event produces a
sum total of 61.7 cfs peak runoff flow in our drainage areas. From the 2-year to 10-year
event, the peak runoff increases to 122.9 cfs. The 100-year storm event produces a
peak runoff of 215.45 cfs when not accounting for inlet restrictions. Rational method
supporting calculations can be found in analysis in Appendix B. See table 8.1 below for a
summary of the rational method peak flow rates for the site.
Table 8.1: Rational Method Subarea Peak Flow Rate Calculations
Node 100 Year Event 10 Year Event 2 Year Event
------------- Q (cfs) Tc (mins) Q (cfs) Tc (mins) Q (cfs) Tc (mins)
A (105) 21.85 8.25 13.36 8.64 7.34 9.19
B (205) 31.06 15.04 18.50 16.52 9.80 18.88
C (307) 119.81 19.73 65.72 22.38 31.32 26.88
D (406) 42.73 9.05 25.34 10.17 13.21 12.33
Total Runoff 215.45 --- 122.92 --- 61.67 ---
Subarea A collects runoff for the on-site apron, adjacent parking and street pavement
areas. The confluence of the adjacent area flow is at node 104, between the inlets at
103 and 105 on the apron. Weir calculations found for inlet 103 and 105 during a 10-
year storm event have a depth of flow of 1.93 and 3.21 inches respectively, please see
Appendix A in this report for all weir calculations. During a 100 year storm event weir
calculations indicate that inlet 105 will have a depth of flow of 4.48 inches. Inlet 105
depth of flow is conservative because the analysis does not take into account an existing
3.5’x2’ inlet located 100 feet to the southwest of inlet 105. As the water level rises past 3
inches of depth at inlet 105 the runoff will begin to be collected by the secondary inlet
mentioned above.
Subarea B collects sheet flow into natural infiltration areas to the south of the Regional
Concourse terminal. In a 100-year storm event the downstream inlet at node 307 will be
inundated to a depth of 11.92 inches. The sump condition in the area will be used for
retention purposes. Furthermore, the natural channel is located south of Taxiway “A-1”
and runs east parallel to the taxiway, in a situation where this channel fills the runoff will
spill over the taxiway and continue to the next inlet 636 feet downstream.
Downstream Subarea C runoff is picked up by a 4 foot by 5.5 foot inlet and a 30 inch
storm drain lateral. Inlet weir calculations show that in a 100 year storm event there
could be 18.62 inches of inundation. This indicates that the water level will stay below
pavement elevation of the adjacent taxiway (note: not an FAA requirement). In a worst
case scenario, the runoff will flow over Taxiway "A-1" into another natural channel area
and be picked up by a second inlet. See table 8.2 below for a summary of the depth of
flow for the onsite inlets.
Table 8.2: Inlet Weir Calculations and Impoundment Conditions
Node 100-Year Event 10-Year Event
-------------
Depth
(inches)
Max. Allowable
(inches)
Depth
(inches)
Max. Allowable
(inches)
103 2.66 12 1.93 4.0
105 (A) 4.48 60 3.21 4.0
205 (B) 11.92 >60 8.44 22.0
307 (C) 18.62 >60 12.48 22.0
403 8.88 24 5.54 4.0
404 4.74 54 2.91 4.0
405 3.12 60 2.19 4.0
406 (D) 2.75 18 1.94 4.0
803 2.16 6 1.32 6
The results of the inlet weir calculations show there is no threat to inundation of any
structure during a 100 year storm. Inlet 406 in Subarea D is the only inlet within a 50 foot
range of any structure (see Hydrology Exhibit, Appendix D). Given an 18 inch drop from
finished floor, the analysis shows excellent conditions with only 2.75 inches of inlet
inundation.
In a 10 year event, the maximum allowable depth of flow is only exceeded at inlet 403 in
Subarea D. As standard practice there should never be more than 4 inches of water
depth over a grate. However our analysis indicates there would be 5.54 inches of water
depth at inlet 403 during a 10year storm. Inlet 403 is located outside the non-movement
area and serves a non-critical area of the apron and would acceptable to permit
temporary peak flow conditions to exceed the recommended value. There is no structure
nearby inlet 403 that the 10 year or 100 year storm has the potential to inundate. In
addition, pipe flow in Subarea D represents a worst case scenario. See the methodology
section for more information.
A stand alone hydraulic analysis was not performed for the existing storm drain system
because it is included in the rational method calculations. Rational method pipe flow
calculations indicate that pipe capacities for all pipes with known values were utilized to
a maximum of pipe flow depth of 47.3% during a 10-year storm.
Table 8.3: Pipe Flow Depth for 10-Year Storm Event
Pipe
Pipe Size
(inch)
Pipe Flow
(cfs)
Depth of Flow
(inch) Percent Full
103-104 24 3.37 6.5 27.1%
803-104 15 2.81 7.1 47.3%
104-105 24 6.14 8.8 36.7%
403-404* 18 11.16 Full Full
404-405* 18 15.41 Full Full
405-406* 18 22.0 Full Full
*Pipe information assumed to be worst case scenario
In summary, all inlets are adequately sized to meet the hydrologic requirements of the
site.
APPENDIX A
REFERENCE MATERIALS
Riverside County, Coachella Valley Area, California
MaB—Myoma fine sand, 0 to 5 percent slopes
Map Unit Setting
Elevation:-200 to 1,800 feet
Mean annual precipitation:2 to 4 inches
Mean annual air temperature:72 to 75 degrees F
Frost-free period:270 to 320 days
Map Unit Composition
Myoma and similar soils:85 percent
Minor components:15 percent
Description of Myoma
Setting
Landform:Alluvial fans
Landform position (two-dimensional):Toeslope
Landform position (three-dimensional):Tread
Down-slope shape:Linear
Across-slope shape:Linear
Parent material:Wind blown sandy alluvium
Properties and qualities
Slope:0 to 5 percent
Depth to restrictive feature:More than 80 inches
Drainage class:Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat):High to very high (5.95
to 19.98 in/hr)
Depth to water table:More than 80 inches
Frequency of flooding:None
Frequency of ponding:None
Calcium carbonate, maximum content:5 percent
Maximum salinity:Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity:Low (about 4.8 inches)
Interpretive groups
Farmland classification:Prime farmland if irrigated
Land capability classification (irrigated):3e
Land capability (nonirrigated):7e
Hydrologic Soil Group:A
Typical profile
0 to 18 inches:Fine sand
18 to 60 inches:Sand
Minor Components
Coachella
Percent of map unit:4 percent
Carsitas
Percent of map unit:4 percent
Unnamed, noncalcareous soils
Percent of map unit:4 percent
Custom Soil Resource Report
12
Riverwash
Percent of map unit:3 percent
Landform:Channels
MaD—Myoma fine sand, 5 to 15 percent slopes
Map Unit Setting
Elevation:-200 to 1,800 feet
Mean annual precipitation:2 to 4 inches
Mean annual air temperature:72 to 75 degrees F
Frost-free period:270 to 320 days
Map Unit Composition
Myoma and similar soils:85 percent
Minor components:15 percent
Description of Myoma
Setting
Landform:Alluvial fans
Landform position (two-dimensional):Footslope
Landform position (three-dimensional):Tread
Down-slope shape:Linear
Across-slope shape:Linear
Parent material:Wind blown sandy alluvium
Properties and qualities
Slope:5 to 15 percent
Depth to restrictive feature:More than 80 inches
Drainage class:Somewhat excessively drained
Capacity of the most limiting layer to transmit water (Ksat):High to very high (5.95
to 19.98 in/hr)
Depth to water table:More than 80 inches
Frequency of flooding:None
Frequency of ponding:None
Maximum salinity:Nonsaline (0.0 to 2.0 mmhos/cm)
Available water capacity:Low (about 4.8 inches)
Interpretive groups
Farmland classification:Prime farmland if irrigated
Land capability classification (irrigated):3e
Land capability (nonirrigated):7e
Hydrologic Soil Group:A
Typical profile
0 to 18 inches:Fine sand
18 to 60 inches:Sand
Custom Soil Resource Report
13
Minor Components
Coachella
Percent of map unit:5 percent
Unnamed, calcareous soils
Percent of map unit:5 percent
Riverwash
Percent of map unit:3 percent
Landform:Channels
Carsitas
Percent of map unit:2 percent
Custom Soil Resource Report
14
N E V A D A
U T A H
A R I Z O N A
OREGON
M EXICO
The National Atlas of the United States of AmericaU.S. Department of the Interior
U.S. Geological Survey
CALIFORNIAWhere We Arenationalatlas.gov TM
RO
pageprecip_ca3.pdf INTERIOR-GEOLOGICAL SURVEY, RESTON, VIRGINIA-2005
MILES
0 25 50 75 100 125 150
Albers equal area projection
R Goose
Lake
Clair Engle
Lake
Shasta
Lake
P i t
R iv e r
E
el
Russi
an R
Clear
Lake
Lake
Oroville
L a k e
T a h o e
S
a
n
R
KernO
w
e
ns
RiverS a l t o n
S e a ColoradoM e rc e d
Lake
Berryessa
M o n o
L a k e
L a k e
H a v a s u
O w e ns
L a k e
Honey
Lake
Lake
Almanor
Eagle
Lake
Trinity
Mid dle Alkali
Lake
Upp er Lak eClear Lake
Reservoir
Salin
a
s
R
RRiverR
Kla m a t h
Riv e r
Joaquin
RiverSacrament
oRi
ve
r
K ingsR
S tanislaus RM o k e lu m n e RFeather R C
oachella C
a
n
al
San Francisco Bay
Buena Vista
Lake
San Pedro Channel
Outer Santa Barbara
Passage Ama
r
g
o
sa
R
Fria
n
t-Ke
r
n CanalMonterey
Bay
Bodega Bay
PACIFIC OCEANS anta BarbaraChannel
PRECIPITATION
Precipitation varies widely across the
United States, from a low of 2.3 inches
per year in California's Death Valley to a
high of 460 inches on Hawaii's Mount
Waialeale. Nevada ranks as the driest
state, with an average annual
precipitation of 9.5 inches, and Hawaii
is the wettest, at 70.3 inches. The
average annual precipitation for
California is 21.44 inches.
Average Annual Precipitation (in inches)
1961-1990
180.1-200
140.1-180
120.1-140
100.1-120
80.1-100
70.1-80
60.1-70
50.1-60
40.1-50
35.1-40
30.1-35
25.1-30
20.1-25
15.1-20
10.1-15
5.1-10
5 and less
APPENDIX B
RATIONAL METHOD
SUPPORTING ANALYSIS
Rational Method Analysis Calculations
Node
-------------Q (cfs)Tc (mins)Q (cfs)Tc (mins)Q (cfs)Tc (mins)
A (105)21.85 8.25 13.36 8.64 7.34 9.19
B (205)31.06 15.04 18.5 16.52 9.8 18.88
C (307)119.81 19.73 65.72 22.38 31.32 26.88
D (406)42.73 9.05 25.34 10.17 13.21 12.33
Total 215.45 --122.92 --61.67 --
% Increase 75.3%--99.3%----
100 Year Event 10 Year Event 2 Year Event
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2012 Advanced Engineering Software (aes)
(Rational Tabling Version 19.0)
Release Date: 06/01/2012 License ID 1501
Analysis prepared by:
************************** DESCRIPTION OF STUDY **************************
* PSP-AREA A *
* Q02 *
* CLH 2013-02-26 *
**************************************************************************
FILE NAME: PSP-A02.DAT
TIME/DATE OF STUDY: 15:45 02/26/2013
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 2.00 1-HOUR INTENSITY(INCH/HOUR) = 0.581
SLOPE OF INTENSITY DURATION CURVE = 0.5806
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 151.00
UPSTREAM ELEVATION(FEET) = 418.00
DOWNSTREAM ELEVATION(FEET) = 415.20
ELEVATION DIFFERENCE(FEET) = 2.80
TC = 0.303*[( 151.00**3)/( 2.80)]**.2 = 5.007
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.455
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8518
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 0.54
TOTAL AREA(ACRES) = 0.26 TOTAL RUNOFF(CFS) = 0.54
****************************************************************************
FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 415.20 DOWNSTREAM(FEET) = 411.70
CHANNEL LENGTH THRU SUBAREA(FEET) = 245.00 CHANNEL SLOPE = 0.0143
CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.919
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8463
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.21
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.54
AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 2.65
Tc(MIN.) = 7.66
SUBAREA AREA(ACRES) = 0.82 SUBAREA RUNOFF(CFS) = 1.33
TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 1.88
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 1.74
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 396.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 404.82 DOWNSTREAM(FEET) = 402.76
FLOW LENGTH(FEET) = 212.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 4.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 4.15
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 1.88
PIPE TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 8.51
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 608.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 8.51
RAINFALL INTENSITY(INCH/HR) = 1.80
TOTAL STREAM AREA(ACRES) = 1.08
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.88
****************************************************************************
FLOW PROCESS FROM NODE 801.00 TO NODE 802.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 119.00
UPSTREAM ELEVATION(FEET) = 415.60
DOWNSTREAM ELEVATION(FEET) = 414.00
ELEVATION DIFFERENCE(FEET) = 1.60
TC = 0.303*[( 119.00**3)/( 1.60)]**.2 = 4.854
COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.457
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8518
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 0.21
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.21
****************************************************************************
FLOW PROCESS FROM NODE 802.00 TO NODE 803.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 414.00 DOWNSTREAM(FEET) = 411.40
CHANNEL LENGTH THRU SUBAREA(FEET) = 181.00 CHANNEL SLOPE = 0.0144
CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 50.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.927
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8464
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.89
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.16
AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 2.60
Tc(MIN.) = 7.60
SUBAREA AREA(ACRES) = 0.81 SUBAREA RUNOFF(CFS) = 1.32
TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 1.53
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 1.40
LONGEST FLOWPATH FROM NODE 801.00 TO NODE 803.00 = 300.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 803.00 TO NODE 104.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 405.22 DOWNSTREAM(FEET) = 402.76
FLOW LENGTH(FEET) = 246.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 15.0 INCH PIPE IS 5.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 4.14
GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 1.53
PIPE TRAVEL TIME(MIN.) = 0.99 Tc(MIN.) = 8.59
LONGEST FLOWPATH FROM NODE 801.00 TO NODE 104.00 = 546.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 8.59
RAINFALL INTENSITY(INCH/HR) = 1.80
TOTAL STREAM AREA(ACRES) = 0.91
PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.53
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 1.88 8.51 1.805 1.08
2 1.53 8.59 1.795 0.91
*********************************WARNING**********************************
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
**************************************************************************
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 3.39 8.51 1.805
2 3.40 8.59 1.795
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 3.39 Tc(MIN.) = 8.51
TOTAL AREA(ACRES) = 2.0
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 608.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 402.76 DOWNSTREAM(FEET) = 400.78
FLOW LENGTH(FEET) = 203.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 4.95
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 3.39
PIPE TRAVEL TIME(MIN.) = 0.68 Tc(MIN.) = 9.19
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 811.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.726
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8441
SOIL CLASSIFICATION IS "A"
SUBAREA AREA(ACRES) = 2.71 SUBAREA RUNOFF(CFS) = 3.95
TOTAL AREA(ACRES) = 4.7 TOTAL RUNOFF(CFS) = 7.34
TC(MIN.) = 9.19
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 4.7 TC(MIN.) = 9.19
PEAK FLOW RATE(CFS) = 7.34
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2012 Advanced Engineering Software (aes)
(Rational Tabling Version 19.0)
Release Date: 06/01/2012 License ID 1501
Analysis prepared by:
************************** DESCRIPTION OF STUDY **************************
* PSP-AREA B *
* Q02 *
* CLH 2013-02-26 *
**************************************************************************
FILE NAME: PSP-B02.DAT
TIME/DATE OF STUDY: 15:54 02/26/2013
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 2.00 1-HOUR INTENSITY(INCH/HOUR) = 0.581
SLOPE OF INTENSITY DURATION CURVE = 0.5806
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 150.00
UPSTREAM ELEVATION(FEET) = 412.40
DOWNSTREAM ELEVATION(FEET) = 409.50
ELEVATION DIFFERENCE(FEET) = 2.90
TC = 0.303*[( 150.00**3)/( 2.90)]**.2 = 4.952
COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.457
USER-SPECIFIED RUNOFF COEFFICIENT = .8518
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 0.50
TOTAL AREA(ACRES) = 0.24 TOTAL RUNOFF(CFS) = 0.50
****************************************************************************
FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 409.50 DOWNSTREAM(FEET) = 407.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 225.00 CHANNEL SLOPE = 0.0102
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 5.00
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.876
USER-SPECIFIED RUNOFF COEFFICIENT = .8459
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.36
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.27
AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 2.96
Tc(MIN.) = 7.96
SUBAREA AREA(ACRES) = 1.07 SUBAREA RUNOFF(CFS) = 1.70
TOTAL AREA(ACRES) = 1.3 PEAK FLOW RATE(CFS) = 2.20
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.51
LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 = 375.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 407.20 DOWNSTREAM(FEET) = 405.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 499.00 CHANNEL SLOPE = 0.0044
CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 50.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 5.00
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.359
USER-SPECIFIED RUNOFF COEFFICIENT = .8392
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.07
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.41
AVERAGE FLOW DEPTH(FEET) = 0.21 TRAVEL TIME(MIN.) = 5.92
Tc(MIN.) = 13.87
SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 1.71
TOTAL AREA(ACRES) = 2.8 PEAK FLOW RATE(CFS) = 3.91
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.23 FLOW VELOCITY(FEET/SEC.) = 1.53
LONGEST FLOWPATH FROM NODE 201.00 TO NODE 204.00 = 874.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 405.00 DOWNSTREAM(FEET) = 401.30
CHANNEL LENGTH THRU SUBAREA(FEET) = 532.00 CHANNEL SLOPE = 0.0070
CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 20.000
MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.136
USER-SPECIFIED RUNOFF COEFFICIENT = .8358
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.87
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.77
AVERAGE FLOW DEPTH(FEET) = 0.33 TRAVEL TIME(MIN.) = 5.00
Tc(MIN.) = 18.88
SUBAREA AREA(ACRES) = 6.20 SUBAREA RUNOFF(CFS) = 5.89
TOTAL AREA(ACRES) = 9.0 PEAK FLOW RATE(CFS) = 9.80
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 1.93
LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 1406.00 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 9.0 TC(MIN.) = 18.88
PEAK FLOW RATE(CFS) = 9.80
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2012 Advanced Engineering Software (aes)
(Rational Tabling Version 19.0)
Release Date: 06/01/2012 License ID 1501
Analysis prepared by:
************************** DESCRIPTION OF STUDY **************************
* PSP-AREA C *
* Q02 *
* CLH 2013-02-26 *
**************************************************************************
FILE NAME: PSP-C02.DAT
TIME/DATE OF STUDY: 16:03 02/26/2013
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 2.00 1-HOUR INTENSITY(INCH/HOUR) = 0.581
SLOPE OF INTENSITY DURATION CURVE = 0.5806
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 105.00
UPSTREAM ELEVATION(FEET) = 424.30
DOWNSTREAM ELEVATION(FEET) = 423.20
ELEVATION DIFFERENCE(FEET) = 1.10
TC = 0.303*[( 105.00**3)/( 1.10)]**.2 = 4.853
COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.457
USER-SPECIFIED RUNOFF COEFFICIENT = .8518
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 0.27
TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) = 0.27
****************************************************************************
FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 423.20 DOWNSTREAM(FEET) = 417.30
CHANNEL LENGTH THRU SUBAREA(FEET) = 481.00 CHANNEL SLOPE = 0.0123
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.620
USER-SPECIFIED RUNOFF COEFFICIENT = .8427
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.15
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.53
AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 5.25
Tc(MIN.) = 10.25
SUBAREA AREA(ACRES) = 2.61 SUBAREA RUNOFF(CFS) = 3.56
TOTAL AREA(ACRES) = 2.7 PEAK FLOW RATE(CFS) = 3.84
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.94
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 303.00 = 586.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 417.30 DOWNSTREAM(FEET) = 409.50
CHANNEL LENGTH THRU SUBAREA(FEET) = 704.00 CHANNEL SLOPE = 0.0111
CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 20.000
MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.50
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.251
USER-SPECIFIED RUNOFF COEFFICIENT = .5879
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.05
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.05
AVERAGE FLOW DEPTH(FEET) = 0.28 TRAVEL TIME(MIN.) = 5.74
Tc(MIN.) = 15.98
SUBAREA AREA(ACRES) = 5.95 SUBAREA RUNOFF(CFS) = 4.38
TOTAL AREA(ACRES) = 8.7 PEAK FLOW RATE(CFS) = 8.21
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.33 FLOW VELOCITY(FEET/SEC.) = 2.20
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 304.00 = 1290.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 409.50 DOWNSTREAM(FEET) = 407.70
CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0054
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.156
USER-SPECIFIED RUNOFF COEFFICIENT = .8361
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.27
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.40
AVERAGE FLOW DEPTH(FEET) = 0.19 TRAVEL TIME(MIN.) = 2.33
Tc(MIN.) = 18.32
SUBAREA AREA(ACRES) = 6.33 SUBAREA RUNOFF(CFS) = 6.12
TOTAL AREA(ACRES) = 15.0 PEAK FLOW RATE(CFS) = 14.33
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) = 2.62
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 305.00 = 1626.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 305.00 TO NODE 306.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 407.70 DOWNSTREAM(FEET) = 404.90
CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0083
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 20.000
MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) = 5.00
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.075
USER-SPECIFIED RUNOFF COEFFICIENT = .7369
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.65
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.28
AVERAGE FLOW DEPTH(FEET) = 0.23 TRAVEL TIME(MIN.) = 2.46
Tc(MIN.) = 20.78
SUBAREA AREA(ACRES) = 3.33 SUBAREA RUNOFF(CFS) = 2.64
TOTAL AREA(ACRES) = 18.3 PEAK FLOW RATE(CFS) = 16.97
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.24 FLOW VELOCITY(FEET/SEC.) = 2.38
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 306.00 = 1962.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 306.00 TO NODE 307.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 404.90 DOWNSTREAM(FEET) = 399.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 899.00 CHANNEL SLOPE = 0.0066
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 20.000
MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) = 5.00
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 0.925
USER-SPECIFIED RUNOFF COEFFICIENT = .4929
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 24.24
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.45
AVERAGE FLOW DEPTH(FEET) = 0.32 TRAVEL TIME(MIN.) = 6.11
Tc(MIN.) = 26.88
SUBAREA AREA(ACRES) = 31.45 SUBAREA RUNOFF(CFS) = 14.35
TOTAL AREA(ACRES) = 49.8 PEAK FLOW RATE(CFS) = 31.32
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.36 FLOW VELOCITY(FEET/SEC.) = 2.67
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 307.00 = 2861.00 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 49.8 TC(MIN.) = 26.88
PEAK FLOW RATE(CFS) = 31.32
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2012 Advanced Engineering Software (aes)
(Rational Tabling Version 19.0)
Release Date: 06/01/2012 License ID 1501
Analysis prepared by:
************************** DESCRIPTION OF STUDY **************************
* PSP-AREA D *
* Q02 *
* CLH 2013-02-26 *
**************************************************************************
FILE NAME: PSP-D02.DAT
TIME/DATE OF STUDY: 16:06 02/26/2013
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 2.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 2.00 1-HOUR INTENSITY(INCH/HOUR) = 0.581
SLOPE OF INTENSITY DURATION CURVE = 0.5806
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 125.00
UPSTREAM ELEVATION(FEET) = 427.90
DOWNSTREAM ELEVATION(FEET) = 426.70
ELEVATION DIFFERENCE(FEET) = 1.20
TC = 0.303*[( 125.00**3)/( 1.20)]**.2 = 5.295
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.377
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8511
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 0.22
TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.22
****************************************************************************
FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 426.70 DOWNSTREAM(FEET) = 420.30
CHANNEL LENGTH THRU SUBAREA(FEET) = 501.00 CHANNEL SLOPE = 0.0128
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.681
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8435
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.18
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.93
AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 4.32
Tc(MIN.) = 9.62
SUBAREA AREA(ACRES) = 4.06 SUBAREA RUNOFF(CFS) = 5.76
TOTAL AREA(ACRES) = 4.2 PEAK FLOW RATE(CFS) = 5.98
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 2.34
LONGEST FLOWPATH FROM NODE 401.00 TO NODE 403.00 = 626.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 414.20 DOWNSTREAM(FEET) = 413.10
FLOW LENGTH(FEET) = 368.00 MANNING'S N = 0.013
ASSUME FULL-FLOWING PIPELINE
PIPE-FLOW VELOCITY(FEET/SEC.) = 3.38
PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 5.98
PIPE TRAVEL TIME(MIN.) = 1.81 Tc(MIN.) = 11.43
LONGEST FLOWPATH FROM NODE 401.00 TO NODE 404.00 = 994.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.520
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8414
SOIL CLASSIFICATION IS "A"
SUBAREA AREA(ACRES) = 1.71 SUBAREA RUNOFF(CFS) = 2.19
TOTAL AREA(ACRES) = 5.9 TOTAL RUNOFF(CFS) = 8.17
TC(MIN.) = 11.43
****************************************************************************
FLOW PROCESS FROM NODE 404.00 TO NODE 405.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 413.10 DOWNSTREAM(FEET) = 412.70
FLOW LENGTH(FEET) = 141.00 MANNING'S N = 0.013
ASSUME FULL-FLOWING PIPELINE
PIPE-FLOW VELOCITY(FEET/SEC.) = 4.62
PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 8.17
PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 11.94
LONGEST FLOWPATH FROM NODE 401.00 TO NODE 405.00 = 1135.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 405.00 TO NODE 405.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.482
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8409
SOIL CLASSIFICATION IS "A"
SUBAREA AREA(ACRES) = 2.69 SUBAREA RUNOFF(CFS) = 3.35
TOTAL AREA(ACRES) = 8.6 TOTAL RUNOFF(CFS) = 11.52
TC(MIN.) = 11.94
****************************************************************************
FLOW PROCESS FROM NODE 405.00 TO NODE 406.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 412.70 DOWNSTREAM(FEET) = 412.30
FLOW LENGTH(FEET) = 151.00 MANNING'S N = 0.013
ASSUME FULL-FLOWING PIPELINE
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.52
PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 11.52
PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 12.33
LONGEST FLOWPATH FROM NODE 401.00 TO NODE 406.00 = 1286.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 406.00 TO NODE 406.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.455
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8405
SOIL CLASSIFICATION IS "A"
SUBAREA AREA(ACRES) = 1.38 SUBAREA RUNOFF(CFS) = 1.69
TOTAL AREA(ACRES) = 9.9 TOTAL RUNOFF(CFS) = 13.21
TC(MIN.) = 12.33
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 9.9 TC(MIN.) = 12.33
PEAK FLOW RATE(CFS) = 13.21
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2012 Advanced Engineering Software (aes)
(Rational Tabling Version 19.0)
Release Date: 06/01/2012 License ID 1501
Analysis prepared by:
************************** DESCRIPTION OF STUDY **************************
* PSP-AREA A *
* Q10 *
* CLH 2013-02-26 *
**************************************************************************
FILE NAME: PSP-A10.DAT
TIME/DATE OF STUDY: 16:07 02/26/2013
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 1.010
SLOPE OF INTENSITY DURATION CURVE = 0.5806
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 151.00
UPSTREAM ELEVATION(FEET) = 418.00
DOWNSTREAM ELEVATION(FEET) = 415.20
ELEVATION DIFFERENCE(FEET) = 2.80
TC = 0.303*[( 151.00**3)/( 2.80)]**.2 = 5.007
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.271
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8641
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 0.96
TOTAL AREA(ACRES) = 0.26 TOTAL RUNOFF(CFS) = 0.96
****************************************************************************
FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 415.20 DOWNSTREAM(FEET) = 411.70
CHANNEL LENGTH THRU SUBAREA(FEET) = 245.00 CHANNEL SLOPE = 0.0143
CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.418
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8592
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.17
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.74
AVERAGE FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 2.34
Tc(MIN.) = 7.35
SUBAREA AREA(ACRES) = 0.82 SUBAREA RUNOFF(CFS) = 2.41
TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 3.37
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) = 1.92
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 396.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 404.82 DOWNSTREAM(FEET) = 402.76
FLOW LENGTH(FEET) = 212.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.5 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 4.93
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 3.37
PIPE TRAVEL TIME(MIN.) = 0.72 Tc(MIN.) = 8.07
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 608.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 8.07
RAINFALL INTENSITY(INCH/HR) = 3.24
TOTAL STREAM AREA(ACRES) = 1.08
PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.37
****************************************************************************
FLOW PROCESS FROM NODE 801.00 TO NODE 802.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 119.00
UPSTREAM ELEVATION(FEET) = 415.60
DOWNSTREAM ELEVATION(FEET) = 414.00
ELEVATION DIFFERENCE(FEET) = 1.60
TC = 0.303*[( 119.00**3)/( 1.60)]**.2 = 4.854
COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.274
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8641
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 0.37
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.37
****************************************************************************
FLOW PROCESS FROM NODE 802.00 TO NODE 803.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 414.00 DOWNSTREAM(FEET) = 411.40
CHANNEL LENGTH THRU SUBAREA(FEET) = 181.00 CHANNEL SLOPE = 0.0144
CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 50.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.503
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8598
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.61
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.48
AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 2.04
Tc(MIN.) = 7.04
SUBAREA AREA(ACRES) = 0.81 SUBAREA RUNOFF(CFS) = 2.44
TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 2.81
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 1.83
LONGEST FLOWPATH FROM NODE 801.00 TO NODE 803.00 = 300.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 803.00 TO NODE 104.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 405.22 DOWNSTREAM(FEET) = 402.76
FLOW LENGTH(FEET) = 246.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 15.0 INCH PIPE IS 7.1 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 4.89
GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 2.81
PIPE TRAVEL TIME(MIN.) = 0.84 Tc(MIN.) = 7.88
LONGEST FLOWPATH FROM NODE 801.00 TO NODE 104.00 = 546.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 7.88
RAINFALL INTENSITY(INCH/HR) = 3.28
TOTAL STREAM AREA(ACRES) = 0.91
PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.81
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 3.37 8.07 3.238 1.08
2 2.81 7.88 3.282 0.91
*********************************WARNING**********************************
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
**************************************************************************
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 6.10 7.88 3.282
2 6.14 8.07 3.238
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 6.14 Tc(MIN.) = 8.07
TOTAL AREA(ACRES) = 2.0
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 608.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 402.76 DOWNSTREAM(FEET) = 400.78
FLOW LENGTH(FEET) = 203.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.8 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 5.84
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 6.14
PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 8.64
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 811.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.110
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8571
SOIL CLASSIFICATION IS "A"
SUBAREA AREA(ACRES) = 2.71 SUBAREA RUNOFF(CFS) = 7.22
TOTAL AREA(ACRES) = 4.7 TOTAL RUNOFF(CFS) = 13.36
TC(MIN.) = 8.64
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 4.7 TC(MIN.) = 8.64
PEAK FLOW RATE(CFS) = 13.36
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2012 Advanced Engineering Software (aes)
(Rational Tabling Version 19.0)
Release Date: 06/01/2012 License ID 1501
Analysis prepared by:
************************** DESCRIPTION OF STUDY **************************
* PSP-AREA B *
* Q10 *
* CLH 2013-02-26 *
**************************************************************************
FILE NAME: PSP-B10.DAT
TIME/DATE OF STUDY: 16:11 02/26/2013
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 1.010
SLOPE OF INTENSITY DURATION CURVE = 0.5806
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 150.00
UPSTREAM ELEVATION(FEET) = 412.40
DOWNSTREAM ELEVATION(FEET) = 409.50
ELEVATION DIFFERENCE(FEET) = 2.90
TC = 0.303*[( 150.00**3)/( 2.90)]**.2 = 4.952
COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.274
USER-SPECIFIED RUNOFF COEFFICIENT = .8641
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 0.89
TOTAL AREA(ACRES) = 0.24 TOTAL RUNOFF(CFS) = 0.89
****************************************************************************
FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 409.50 DOWNSTREAM(FEET) = 407.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 225.00 CHANNEL SLOPE = 0.0102
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 5.00
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.401
USER-SPECIFIED RUNOFF COEFFICIENT = .8591
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.48
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.55
AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 2.41
Tc(MIN.) = 7.41
SUBAREA AREA(ACRES) = 1.07 SUBAREA RUNOFF(CFS) = 3.13
TOTAL AREA(ACRES) = 1.3 PEAK FLOW RATE(CFS) = 4.01
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 1.85
LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 = 375.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 407.20 DOWNSTREAM(FEET) = 405.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 499.00 CHANNEL SLOPE = 0.0044
CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 50.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 5.00
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.539
USER-SPECIFIED RUNOFF COEFFICIENT = .8525
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.64
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.71
AVERAGE FLOW DEPTH(FEET) = 0.26 TRAVEL TIME(MIN.) = 4.85
Tc(MIN.) = 12.26
SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 3.25
TOTAL AREA(ACRES) = 2.8 PEAK FLOW RATE(CFS) = 7.26
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.29 FLOW VELOCITY(FEET/SEC.) = 1.79
LONGEST FLOWPATH FROM NODE 201.00 TO NODE 204.00 = 874.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 405.00 DOWNSTREAM(FEET) = 401.30
CHANNEL LENGTH THRU SUBAREA(FEET) = 532.00 CHANNEL SLOPE = 0.0070
CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 20.000
MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.136
USER-SPECIFIED RUNOFF COEFFICIENT = .8487
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.91
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.08
AVERAGE FLOW DEPTH(FEET) = 0.45 TRAVEL TIME(MIN.) = 4.26
Tc(MIN.) = 16.52
SUBAREA AREA(ACRES) = 6.20 SUBAREA RUNOFF(CFS) = 11.24
TOTAL AREA(ACRES) = 9.0 PEAK FLOW RATE(CFS) = 18.50
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.52 FLOW VELOCITY(FEET/SEC.) = 2.28
LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 1406.00 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 9.0 TC(MIN.) = 16.52
PEAK FLOW RATE(CFS) = 18.50
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2012 Advanced Engineering Software (aes)
(Rational Tabling Version 19.0)
Release Date: 06/01/2012 License ID 1501
Analysis prepared by:
************************** DESCRIPTION OF STUDY **************************
* PSP-AREA C *
* Q10 *
* CLH 2013-02-26 *
**************************************************************************
FILE NAME: PSP-C10.DAT
TIME/DATE OF STUDY: 16:13 02/26/2013
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 1.010
SLOPE OF INTENSITY DURATION CURVE = 0.5806
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 105.00
UPSTREAM ELEVATION(FEET) = 424.30
DOWNSTREAM ELEVATION(FEET) = 423.20
ELEVATION DIFFERENCE(FEET) = 1.10
TC = 0.303*[( 105.00**3)/( 1.10)]**.2 = 4.853
COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.274
USER-SPECIFIED RUNOFF COEFFICIENT = .8641
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 0.48
TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) = 0.48
****************************************************************************
FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 423.20 DOWNSTREAM(FEET) = 417.30
CHANNEL LENGTH THRU SUBAREA(FEET) = 481.00 CHANNEL SLOPE = 0.0123
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.041
USER-SPECIFIED RUNOFF COEFFICIENT = .8566
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.98
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.01
AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 3.99
Tc(MIN.) = 8.99
SUBAREA AREA(ACRES) = 2.61 SUBAREA RUNOFF(CFS) = 6.80
TOTAL AREA(ACRES) = 2.7 PEAK FLOW RATE(CFS) = 7.28
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 2.61
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 303.00 = 586.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 417.30 DOWNSTREAM(FEET) = 409.50
CHANNEL LENGTH THRU SUBAREA(FEET) = 704.00 CHANNEL SLOPE = 0.0111
CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 20.000
MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.50
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.370
USER-SPECIFIED RUNOFF COEFFICIENT = .6550
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.96
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.43
AVERAGE FLOW DEPTH(FEET) = 0.39 TRAVEL TIME(MIN.) = 4.82
Tc(MIN.) = 13.81
SUBAREA AREA(ACRES) = 5.95 SUBAREA RUNOFF(CFS) = 9.23
TOTAL AREA(ACRES) = 8.7 PEAK FLOW RATE(CFS) = 16.51
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.45 FLOW VELOCITY(FEET/SEC.) = 2.65
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 304.00 = 1290.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 409.50 DOWNSTREAM(FEET) = 407.70
CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0054
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.208
USER-SPECIFIED RUNOFF COEFFICIENT = .8494
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 22.45
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.13
AVERAGE FLOW DEPTH(FEET) = 0.29 TRAVEL TIME(MIN.) = 1.79
Tc(MIN.) = 15.60
SUBAREA AREA(ACRES) = 6.33 SUBAREA RUNOFF(CFS) = 11.87
TOTAL AREA(ACRES) = 15.0 PEAK FLOW RATE(CFS) = 28.38
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.33 FLOW VELOCITY(FEET/SEC.) = 3.41
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 305.00 = 1626.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 305.00 TO NODE 306.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 407.70 DOWNSTREAM(FEET) = 404.90
CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0083
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 20.000
MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) = 5.00
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.062
USER-SPECIFIED RUNOFF COEFFICIENT = .7698
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 31.03
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.88
AVERAGE FLOW DEPTH(FEET) = 0.34 TRAVEL TIME(MIN.) = 1.94
Tc(MIN.) = 17.54
SUBAREA AREA(ACRES) = 3.33 SUBAREA RUNOFF(CFS) = 5.29
TOTAL AREA(ACRES) = 18.3 PEAK FLOW RATE(CFS) = 33.67
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.35 FLOW VELOCITY(FEET/SEC.) = 2.97
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 306.00 = 1962.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 306.00 TO NODE 307.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 404.90 DOWNSTREAM(FEET) = 399.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 899.00 CHANNEL SLOPE = 0.0066
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 20.000
MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) = 5.00
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.791
USER-SPECIFIED RUNOFF COEFFICIENT = .5691
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 49.86
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.10
AVERAGE FLOW DEPTH(FEET) = 0.47 TRAVEL TIME(MIN.) = 4.84
Tc(MIN.) = 22.38
SUBAREA AREA(ACRES) = 31.45 SUBAREA RUNOFF(CFS) = 32.05
TOTAL AREA(ACRES) = 49.8 PEAK FLOW RATE(CFS) = 65.72
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.54 FLOW VELOCITY(FEET/SEC.) = 3.36
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 307.00 = 2861.00 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 49.8 TC(MIN.) = 22.38
PEAK FLOW RATE(CFS) = 65.72
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2012 Advanced Engineering Software (aes)
(Rational Tabling Version 19.0)
Release Date: 06/01/2012 License ID 1501
Analysis prepared by:
************************** DESCRIPTION OF STUDY **************************
* PSP-AREA D *
* Q10 *
* CLH 2013-02-26 *
**************************************************************************
FILE NAME: PSP-D10.DAT
TIME/DATE OF STUDY: 16:15 02/26/2013
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 10.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 1.010
SLOPE OF INTENSITY DURATION CURVE = 0.5806
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 125.00
UPSTREAM ELEVATION(FEET) = 427.90
DOWNSTREAM ELEVATION(FEET) = 426.70
ELEVATION DIFFERENCE(FEET) = 1.20
TC = 0.303*[( 125.00**3)/( 1.20)]**.2 = 5.295
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.134
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8634
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 0.39
TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.39
****************************************************************************
FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 426.70 DOWNSTREAM(FEET) = 420.30
CHANNEL LENGTH THRU SUBAREA(FEET) = 501.00 CHANNEL SLOPE = 0.0128
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.093
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8570
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.86
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.43
AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 3.43
Tc(MIN.) = 8.73
SUBAREA AREA(ACRES) = 4.06 SUBAREA RUNOFF(CFS) = 10.76
TOTAL AREA(ACRES) = 4.2 PEAK FLOW RATE(CFS) = 11.16
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.15 FLOW VELOCITY(FEET/SEC.) = 3.02
LONGEST FLOWPATH FROM NODE 401.00 TO NODE 403.00 = 626.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 414.20 DOWNSTREAM(FEET) = 413.10
FLOW LENGTH(FEET) = 368.00 MANNING'S N = 0.013
ASSUME FULL-FLOWING PIPELINE
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.31
PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 11.16
PIPE TRAVEL TIME(MIN.) = 0.97 Tc(MIN.) = 9.70
LONGEST FLOWPATH FROM NODE 401.00 TO NODE 404.00 = 994.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.910
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8556
SOIL CLASSIFICATION IS "A"
SUBAREA AREA(ACRES) = 1.71 SUBAREA RUNOFF(CFS) = 4.26
TOTAL AREA(ACRES) = 5.9 TOTAL RUNOFF(CFS) = 15.41
TC(MIN.) = 9.70
****************************************************************************
FLOW PROCESS FROM NODE 404.00 TO NODE 405.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 413.10 DOWNSTREAM(FEET) = 412.70
FLOW LENGTH(FEET) = 141.00 MANNING'S N = 0.013
ASSUME FULL-FLOWING PIPELINE
PIPE-FLOW VELOCITY(FEET/SEC.) = 8.72
PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 15.41
PIPE TRAVEL TIME(MIN.) = 0.27 Tc(MIN.) = 9.97
LONGEST FLOWPATH FROM NODE 401.00 TO NODE 405.00 = 1135.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 405.00 TO NODE 405.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.864
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8552
SOIL CLASSIFICATION IS "A"
SUBAREA AREA(ACRES) = 2.69 SUBAREA RUNOFF(CFS) = 6.59
TOTAL AREA(ACRES) = 8.6 TOTAL RUNOFF(CFS) = 22.00
TC(MIN.) = 9.97
****************************************************************************
FLOW PROCESS FROM NODE 405.00 TO NODE 406.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 412.70 DOWNSTREAM(FEET) = 412.30
FLOW LENGTH(FEET) = 151.00 MANNING'S N = 0.013
ASSUME FULL-FLOWING PIPELINE
PIPE-FLOW VELOCITY(FEET/SEC.) = 12.45
PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 22.00
PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 10.17
LONGEST FLOWPATH FROM NODE 401.00 TO NODE 406.00 = 1286.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 406.00 TO NODE 406.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.830
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8550
SOIL CLASSIFICATION IS "A"
SUBAREA AREA(ACRES) = 1.38 SUBAREA RUNOFF(CFS) = 3.34
TOTAL AREA(ACRES) = 9.9 TOTAL RUNOFF(CFS) = 25.34
TC(MIN.) = 10.17
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 9.9 TC(MIN.) = 10.17
PEAK FLOW RATE(CFS) = 25.34
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2012 Advanced Engineering Software (aes)
(Rational Tabling Version 19.0)
Release Date: 06/01/2012 License ID 1501
Analysis prepared by:
************************** DESCRIPTION OF STUDY **************************
* PSP-AREA A *
* Q100 *
* CLH 2013-02-26 *
**************************************************************************
FILE NAME: PSP-A100.DAT
TIME/DATE OF STUDY: 11:53 02/26/2013
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.600
SLOPE OF INTENSITY DURATION CURVE = 0.5796
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 151.00
UPSTREAM ELEVATION(FEET) = 418.00
DOWNSTREAM ELEVATION(FEET) = 415.20
ELEVATION DIFFERENCE(FEET) = 2.80
TC = 0.303*[( 151.00**3)/( 2.80)]**.2 = 5.007
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.750
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8734
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 1.53
TOTAL AREA(ACRES) = 0.26 TOTAL RUNOFF(CFS) = 1.53
****************************************************************************
FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 415.20 DOWNSTREAM(FEET) = 411.70
CHANNEL LENGTH THRU SUBAREA(FEET) = 245.00 CHANNEL SLOPE = 0.0143
CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.508
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8694
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.51
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.94
AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 2.10
Tc(MIN.) = 7.11
SUBAREA AREA(ACRES) = 0.82 SUBAREA RUNOFF(CFS) = 3.93
TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 5.46
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 2.20
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 396.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 404.82 DOWNSTREAM(FEET) = 402.76
FLOW LENGTH(FEET) = 212.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.3 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 5.65
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 5.46
PIPE TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) = 7.74
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 608.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE:
TIME OF CONCENTRATION(MIN.) = 7.74
RAINFALL INTENSITY(INCH/HR) = 5.24
TOTAL STREAM AREA(ACRES) = 1.08
PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.46
****************************************************************************
FLOW PROCESS FROM NODE 801.00 TO NODE 802.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 119.00
UPSTREAM ELEVATION(FEET) = 415.60
DOWNSTREAM ELEVATION(FEET) = 414.00
ELEVATION DIFFERENCE(FEET) = 1.60
TC = 0.303*[( 119.00**3)/( 1.60)]**.2 = 4.854
COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.755
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8734
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 0.59
TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.59
****************************************************************************
FLOW PROCESS FROM NODE 802.00 TO NODE 803.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 414.00 DOWNSTREAM(FEET) = 411.40
CHANNEL LENGTH THRU SUBAREA(FEET) = 181.00 CHANNEL SLOPE = 0.0144
CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 50.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.691
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8701
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.60
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.75
AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 1.72
Tc(MIN.) = 6.72
SUBAREA AREA(ACRES) = 0.81 SUBAREA RUNOFF(CFS) = 4.01
TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 4.60
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 2.12
LONGEST FLOWPATH FROM NODE 801.00 TO NODE 803.00 = 300.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 803.00 TO NODE 104.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 405.22 DOWNSTREAM(FEET) = 402.76
FLOW LENGTH(FEET) = 246.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.7 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 5.48
GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 4.60
PIPE TRAVEL TIME(MIN.) = 0.75 Tc(MIN.) = 7.47
LONGEST FLOWPATH FROM NODE 801.00 TO NODE 104.00 = 546.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1
----------------------------------------------------------------------------
>>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<<
>>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<<
============================================================================
TOTAL NUMBER OF STREAMS = 2
CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE:
TIME OF CONCENTRATION(MIN.) = 7.47
RAINFALL INTENSITY(INCH/HR) = 5.35
TOTAL STREAM AREA(ACRES) = 0.91
PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.60
** CONFLUENCE DATA **
STREAM RUNOFF Tc INTENSITY AREA
NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE)
1 5.46 7.74 5.245 1.08
2 4.60 7.47 5.353 0.91
*********************************WARNING**********************************
IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED
ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA
WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW.
**************************************************************************
RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO
CONFLUENCE FORMULA USED FOR 2 STREAMS.
** PEAK FLOW RATE TABLE **
STREAM RUNOFF Tc INTENSITY
NUMBER (CFS) (MIN.) (INCH/HOUR)
1 9.87 7.47 5.353
2 9.97 7.74 5.245
COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS:
PEAK FLOW RATE(CFS) = 9.97 Tc(MIN.) = 7.74
TOTAL AREA(ACRES) = 2.0
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 608.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 402.76 DOWNSTREAM(FEET) = 400.78
FLOW LENGTH(FEET) = 203.00 MANNING'S N = 0.013
DEPTH OF FLOW IN 24.0 INCH PIPE IS 11.6 INCHES
PIPE-FLOW VELOCITY(FEET/SEC.) = 6.64
GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 9.97
PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 8.25
LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 811.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.055
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8677
SOIL CLASSIFICATION IS "A"
SUBAREA AREA(ACRES) = 2.71 SUBAREA RUNOFF(CFS) = 11.89
TOTAL AREA(ACRES) = 4.7 TOTAL RUNOFF(CFS) = 21.85
TC(MIN.) = 8.25
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 4.7 TC(MIN.) = 8.25
PEAK FLOW RATE(CFS) = 21.85
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2012 Advanced Engineering Software (aes)
(Rational Tabling Version 19.0)
Release Date: 06/01/2012 License ID 1501
Analysis prepared by:
************************** DESCRIPTION OF STUDY **************************
* PSP-AREA B *
* Q100 *
* CLH 2013-02-26 *
**************************************************************************
FILE NAME: PSP-B100.DAT
TIME/DATE OF STUDY: 14:04 02/26/2013
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.600
SLOPE OF INTENSITY DURATION CURVE = 0.5796
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 150.00
UPSTREAM ELEVATION(FEET) = 412.40
DOWNSTREAM ELEVATION(FEET) = 409.50
ELEVATION DIFFERENCE(FEET) = 2.90
TC = 0.303*[( 150.00**3)/( 2.90)]**.2 = 4.952
COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.755
USER-SPECIFIED RUNOFF COEFFICIENT = .8734
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 1.42
TOTAL AREA(ACRES) = 0.24 TOTAL RUNOFF(CFS) = 1.42
****************************************************************************
FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 409.50 DOWNSTREAM(FEET) = 407.20
CHANNEL LENGTH THRU SUBAREA(FEET) = 225.00 CHANNEL SLOPE = 0.0102
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 5.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.552
USER-SPECIFIED RUNOFF COEFFICIENT = .8696
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.04
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.86
AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 2.01
Tc(MIN.) = 7.01
SUBAREA AREA(ACRES) = 1.07 SUBAREA RUNOFF(CFS) = 5.17
TOTAL AREA(ACRES) = 1.3 PEAK FLOW RATE(CFS) = 6.58
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 2.36
LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 = 375.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 407.20 DOWNSTREAM(FEET) = 405.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 499.00 CHANNEL SLOPE = 0.0044
CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 50.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 5.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.211
USER-SPECIFIED RUNOFF COEFFICIENT = .8638
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.32
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.94
AVERAGE FLOW DEPTH(FEET) = 0.31 TRAVEL TIME(MIN.) = 4.29
Tc(MIN.) = 11.30
SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 5.46
TOTAL AREA(ACRES) = 2.8 PEAK FLOW RATE(CFS) = 12.04
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.35 FLOW VELOCITY(FEET/SEC.) = 2.01
LONGEST FLOWPATH FROM NODE 201.00 TO NODE 204.00 = 874.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 405.00 DOWNSTREAM(FEET) = 401.30
CHANNEL LENGTH THRU SUBAREA(FEET) = 532.00 CHANNEL SLOPE = 0.0070
CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 20.000
MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.568
USER-SPECIFIED RUNOFF COEFFICIENT = .8602
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 21.62
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.37
AVERAGE FLOW DEPTH(FEET) = 0.56 TRAVEL TIME(MIN.) = 3.74
Tc(MIN.) = 15.04
SUBAREA AREA(ACRES) = 6.20 SUBAREA RUNOFF(CFS) = 19.03
TOTAL AREA(ACRES) = 9.0 PEAK FLOW RATE(CFS) = 31.06
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.66 FLOW VELOCITY(FEET/SEC.) = 2.59
LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 1406.00 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 9.0 TC(MIN.) = 15.04
PEAK FLOW RATE(CFS) = 31.06
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2012 Advanced Engineering Software (aes)
(Rational Tabling Version 19.0)
Release Date: 06/01/2012 License ID 1501
Analysis prepared by:
************************** DESCRIPTION OF STUDY **************************
* PSP-AREA C *
* Q100 *
* CLH 2013-02-26 *
**************************************************************************
FILE NAME: PSP-C100.DAT
TIME/DATE OF STUDY: 14:34 02/26/2013
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.600
SLOPE OF INTENSITY DURATION CURVE = 0.5796
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 105.00
UPSTREAM ELEVATION(FEET) = 424.30
DOWNSTREAM ELEVATION(FEET) = 423.20
ELEVATION DIFFERENCE(FEET) = 1.10
TC = 0.303*[( 105.00**3)/( 1.10)]**.2 = 4.853
COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN.
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.755
USER-SPECIFIED RUNOFF COEFFICIENT = .8734
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 0.77
TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) = 0.77
****************************************************************************
FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 423.20 DOWNSTREAM(FEET) = 417.30
CHANNEL LENGTH THRU SUBAREA(FEET) = 481.00 CHANNEL SLOPE = 0.0123
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.027
USER-SPECIFIED RUNOFF COEFFICIENT = .8676
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.61
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.41
AVERAGE FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 3.32
Tc(MIN.) = 8.32
SUBAREA AREA(ACRES) = 2.61 SUBAREA RUNOFF(CFS) = 11.38
TOTAL AREA(ACRES) = 2.7 PEAK FLOW RATE(CFS) = 12.15
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 3.13
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 303.00 = 586.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 417.30 DOWNSTREAM(FEET) = 409.50
CHANNEL LENGTH THRU SUBAREA(FEET) = 704.00 CHANNEL SLOPE = 0.0111
CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 20.000
MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.50
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.959
USER-SPECIFIED RUNOFF COEFFICIENT = .7123
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.65
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.76
AVERAGE FLOW DEPTH(FEET) = 0.50 TRAVEL TIME(MIN.) = 4.24
Tc(MIN.) = 12.57
SUBAREA AREA(ACRES) = 5.95 SUBAREA RUNOFF(CFS) = 16.78
TOTAL AREA(ACRES) = 8.7 PEAK FLOW RATE(CFS) = 28.93
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.58 FLOW VELOCITY(FEET/SEC.) = 3.05
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 304.00 = 1290.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 409.50 DOWNSTREAM(FEET) = 407.70
CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0054
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.718
USER-SPECIFIED RUNOFF COEFFICIENT = .8611
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 39.06
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.89
AVERAGE FLOW DEPTH(FEET) = 0.40 TRAVEL TIME(MIN.) = 1.44
Tc(MIN.) = 14.01
SUBAREA AREA(ACRES) = 6.33 SUBAREA RUNOFF(CFS) = 20.27
TOTAL AREA(ACRES) = 15.0 PEAK FLOW RATE(CFS) = 49.19
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.46 FLOW VELOCITY(FEET/SEC.) = 4.25
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 305.00 = 1626.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 305.00 TO NODE 306.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 407.70 DOWNSTREAM(FEET) = 404.90
CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0083
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 20.000
MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) = 5.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.487
USER-SPECIFIED RUNOFF COEFFICIENT = .7991
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 53.84
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.42
AVERAGE FLOW DEPTH(FEET) = 0.46 TRAVEL TIME(MIN.) = 1.64
Tc(MIN.) = 15.65
SUBAREA AREA(ACRES) = 3.33 SUBAREA RUNOFF(CFS) = 9.28
TOTAL AREA(ACRES) = 18.3 PEAK FLOW RATE(CFS) = 58.47
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.48 FLOW VELOCITY(FEET/SEC.) = 3.54
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 306.00 = 1962.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 306.00 TO NODE 307.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 404.90 DOWNSTREAM(FEET) = 399.00
CHANNEL LENGTH THRU SUBAREA(FEET) = 899.00 CHANNEL SLOPE = 0.0066
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 20.000
MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) = 5.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.048
USER-SPECIFIED RUNOFF COEFFICIENT = .6399
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 89.39
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.67
AVERAGE FLOW DEPTH(FEET) = 0.64 TRAVEL TIME(MIN.) = 4.09
Tc(MIN.) = 19.73
SUBAREA AREA(ACRES) = 31.45 SUBAREA RUNOFF(CFS) = 61.34
TOTAL AREA(ACRES) = 49.8 PEAK FLOW RATE(CFS) = 119.81
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.75 FLOW VELOCITY(FEET/SEC.) = 3.99
LONGEST FLOWPATH FROM NODE 301.00 TO NODE 307.00 = 2861.00 FEET.
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 49.8 TC(MIN.) = 19.73
PEAK FLOW RATE(CFS) = 119.81
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
____________________________________________________________________________
****************************************************************************
RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON
RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT
(RCFC&WCD) 1978 HYDROLOGY MANUAL
(c) Copyright 1982-2012 Advanced Engineering Software (aes)
(Rational Tabling Version 19.0)
Release Date: 06/01/2012 License ID 1501
Analysis prepared by:
************************** DESCRIPTION OF STUDY **************************
* PSP-AREA D *
* Q100 *
* CLH 2013-02-26 *
**************************************************************************
FILE NAME: PSP-D100.DAT
TIME/DATE OF STUDY: 15:08 02/26/2013
----------------------------------------------------------------------------
USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION:
----------------------------------------------------------------------------
USER SPECIFIED STORM EVENT(YEAR) = 100.00
SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00
SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90
10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830
10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000
100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520
100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600
SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893
SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024
COMPUTED RAINFALL INTENSITY DATA:
STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.600
SLOPE OF INTENSITY DURATION CURVE = 0.5796
RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD
NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL
AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES
*USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL*
HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING
WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR
NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n)
=== ===== ========= ================= ====== ===== ====== ===== =======
1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150
GLOBAL STREET FLOW-DEPTH CONSTRAINTS:
1. Relative Flow-Depth = 0.00 FEET
as (Maximum Allowable Street Flow Depth) - (Top-of-Curb)
2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S)
*SIZE PIPE WITH A FLOW CAPACITY GREATER THAN
OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.*
****************************************************************************
FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 21
----------------------------------------------------------------------------
>>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<<
============================================================================
ASSUMED INITIAL SUBAREA UNIFORM
DEVELOPMENT IS COMMERCIAL
TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2
INITIAL SUBAREA FLOW-LENGTH(FEET) = 125.00
UPSTREAM ELEVATION(FEET) = 427.90
DOWNSTREAM ELEVATION(FEET) = 426.70
ELEVATION DIFFERENCE(FEET) = 1.20
TC = 0.303*[( 125.00**3)/( 1.20)]**.2 = 5.295
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.534
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8728
SOIL CLASSIFICATION IS "A"
SUBAREA RUNOFF(CFS) = 0.63
TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.63
****************************************************************************
FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 51
----------------------------------------------------------------------------
>>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<<
>>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 426.70 DOWNSTREAM(FEET) = 420.30
CHANNEL LENGTH THRU SUBAREA(FEET) = 501.00 CHANNEL SLOPE = 0.0128
CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000
MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.077
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8678
SOIL CLASSIFICATION IS "A"
TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.72
TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.89
AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 2.89
Tc(MIN.) = 8.18
SUBAREA AREA(ACRES) = 4.06 SUBAREA RUNOFF(CFS) = 17.89
TOTAL AREA(ACRES) = 4.2 PEAK FLOW RATE(CFS) = 18.52
END OF SUBAREA CHANNEL FLOW HYDRAULICS:
DEPTH(FEET) = 0.20 FLOW VELOCITY(FEET/SEC.) = 3.79
LONGEST FLOWPATH FROM NODE 401.00 TO NODE 403.00 = 626.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 414.20 DOWNSTREAM(FEET) = 413.10
FLOW LENGTH(FEET) = 368.00 MANNING'S N = 0.013
ASSUME FULL-FLOWING PIPELINE
PIPE-FLOW VELOCITY(FEET/SEC.) = 10.48
PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 18.52
PIPE TRAVEL TIME(MIN.) = 0.59 Tc(MIN.) = 8.77
LONGEST FLOWPATH FROM NODE 401.00 TO NODE 404.00 = 994.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.878
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8669
SOIL CLASSIFICATION IS "A"
SUBAREA AREA(ACRES) = 1.71 SUBAREA RUNOFF(CFS) = 7.23
TOTAL AREA(ACRES) = 5.9 TOTAL RUNOFF(CFS) = 25.75
TC(MIN.) = 8.77
****************************************************************************
FLOW PROCESS FROM NODE 404.00 TO NODE 405.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 413.10 DOWNSTREAM(FEET) = 412.70
FLOW LENGTH(FEET) = 141.00 MANNING'S N = 0.013
ASSUME FULL-FLOWING PIPELINE
PIPE-FLOW VELOCITY(FEET/SEC.) = 14.57
PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 25.75
PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 8.93
LONGEST FLOWPATH FROM NODE 401.00 TO NODE 405.00 = 1135.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 405.00 TO NODE 405.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.827
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8667
SOIL CLASSIFICATION IS "A"
SUBAREA AREA(ACRES) = 2.69 SUBAREA RUNOFF(CFS) = 11.25
TOTAL AREA(ACRES) = 8.6 TOTAL RUNOFF(CFS) = 37.00
TC(MIN.) = 8.93
****************************************************************************
FLOW PROCESS FROM NODE 405.00 TO NODE 406.00 IS CODE = 41
----------------------------------------------------------------------------
>>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<<
>>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<<
============================================================================
ELEVATION DATA: UPSTREAM(FEET) = 412.70 DOWNSTREAM(FEET) = 412.30
FLOW LENGTH(FEET) = 151.00 MANNING'S N = 0.013
ASSUME FULL-FLOWING PIPELINE
PIPE-FLOW VELOCITY(FEET/SEC.) = 20.94
PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA)
GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1
PIPE-FLOW(CFS) = 37.00
PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 9.05
LONGEST FLOWPATH FROM NODE 401.00 TO NODE 406.00 = 1286.00 FEET.
****************************************************************************
FLOW PROCESS FROM NODE 406.00 TO NODE 406.00 IS CODE = 81
----------------------------------------------------------------------------
>>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<<
============================================================================
100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.789
COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8665
SOIL CLASSIFICATION IS "A"
SUBAREA AREA(ACRES) = 1.38 SUBAREA RUNOFF(CFS) = 5.73
TOTAL AREA(ACRES) = 9.9 TOTAL RUNOFF(CFS) = 42.73
TC(MIN.) = 9.05
============================================================================
END OF STUDY SUMMARY:
TOTAL AREA(ACRES) = 9.9 TC(MIN.) = 9.05
PEAK FLOW RATE(CFS) = 42.73
============================================================================
============================================================================
END OF RATIONAL METHOD ANALYSIS
APPENDIX C
INLET CALCULATIONS
Inlet103Q10.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 3.3700 cfs
Coefficient ..................... 0.6100
Height .......................... 4.0000 in
Computed Results:
Depth of Flow ................... 1.9313 in
Full Flow ....................... 10.0449 cfs
Velocity ........................ 1.3087 fps
Width ........................... 192.0000 in
Area ............................ 5.3333 ft2
Perimeter ....................... 200.0000 in
Wet Perimeter ................... 195.8626 in
Wet Area ........................ 2.5751 ft2
Percent Full .................... 48.2826 %
Page 1
Inlet103Q100.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 5.4600 cfs
Coefficient ..................... 0.6100
Height .......................... 12.0000 in
Computed Results:
Depth of Flow ................... 2.6642 in
Full Flow ....................... 52.1947 cfs
Velocity ........................ 1.5371 fps
Width ........................... 192.0000 in
Area ............................ 16.0000 ft2
Perimeter ....................... 216.0000 in
Wet Perimeter ................... 197.3283 in
Wet Area ........................ 3.5522 ft2
Percent Full .................... 22.2013 %
Page 1
Inlet105Q10.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 7.2200 cfs
Coefficient ..................... 0.6100
Height .......................... 4.0000 in
Computed Results:
Depth of Flow ................... 3.2096 in
Full Flow ....................... 10.0449 cfs
Velocity ........................ 1.6871 fps
Width ........................... 192.0000 in
Area ............................ 5.3333 ft2
Perimeter ....................... 200.0000 in
Wet Perimeter ................... 198.4193 in
Wet Area ........................ 4.2795 ft2
Percent Full .................... 80.2408 %
Page 1
Inlet105Q100.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 11.8900 cfs
Coefficient ..................... 0.6100
Height .......................... 12.0000 in
Computed Results:
Depth of Flow ................... 4.4759 in
Full Flow ....................... 52.1947 cfs
Velocity ........................ 1.9923 fps
Width ........................... 192.0000 in
Area ............................ 16.0000 ft2
Perimeter ....................... 216.0000 in
Wet Perimeter ................... 200.9519 in
Wet Area ........................ 5.9679 ft2
Percent Full .................... 37.2996 %
Page 1
Inlet205Q10.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 18.5000 cfs
Coefficient ..................... 0.6100
Height .......................... 18.0000 in
Computed Results:
Depth of Flow ................... 8.4377 in
Full Flow ....................... 57.6425 cfs
Velocity ........................ 2.7354 fps
Width ........................... 115.4200 in
Area ............................ 14.4275 ft2
Perimeter ....................... 151.4200 in
Wet Perimeter ................... 132.2954 in
Wet Area ........................ 6.7631 ft2
Percent Full .................... 46.8762 %
Page 1
Inlet205Q100.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 31.0600 cfs
Coefficient ..................... 0.6100
Height .......................... 18.0000 in
Computed Results:
Depth of Flow ................... 11.9191 in
Full Flow ....................... 57.6425 cfs
Velocity ........................ 3.2512 fps
Width ........................... 115.4200 in
Area ............................ 14.4275 ft2
Perimeter ....................... 151.4200 in
Wet Perimeter ................... 139.2583 in
Wet Area ........................ 9.5535 ft2
Percent Full .................... 66.2174 %
Page 1
Inlet307Q10.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 65.7200 cfs
Coefficient ..................... 0.6100
Height .......................... 18.0000 in
Computed Results:
Depth of Flow ................... 12.4779 in
Full Flow ....................... 113.8667 cfs
Velocity ........................ 3.3265 fps
Width ........................... 228.0000 in
Area ............................ 28.5000 ft2
Perimeter ....................... 264.0000 in
Wet Perimeter ................... 252.9557 in
Wet Area ........................ 19.7566 ft2
Percent Full .................... 69.3214 %
Page 1
Inlet307Q100.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 119.8100 cfs
Coefficient ..................... 0.6100
Height .......................... 24.0000 in
Computed Results:
Depth of Flow ................... 18.6210 in
Full Flow ....................... 175.3092 cfs
Velocity ........................ 4.0637 fps
Width ........................... 228.0000 in
Area ............................ 38.0000 ft2
Perimeter ....................... 276.0000 in
Wet Perimeter ................... 265.2420 in
Wet Area ........................ 29.4833 ft2
Percent Full .................... 77.5876 %
Page 1
Inlet403Q10.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 11.1600 cfs
Coefficient ..................... 0.6100
Height .......................... 12.0000 in
Computed Results:
Depth of Flow ................... 5.5364 in
Full Flow ....................... 35.6120 cfs
Velocity ........................ 2.2158 fps
Width ........................... 131.0000 in
Area ............................ 10.9167 ft2
Perimeter ....................... 155.0000 in
Wet Perimeter ................... 142.0728 in
Wet Area ........................ 5.0366 ft2
Percent Full .................... 46.1366 %
Page 1
Inlet403Q100.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 18.5200 cfs
Coefficient ..................... 0.6100
Height .......................... 12.0000 in
Computed Results:
Depth of Flow ................... 8.8812 in
Full Flow ....................... 29.0876 cfs
Velocity ........................ 2.8064 fps
Width ........................... 107.0000 in
Area ............................ 8.9167 ft2
Perimeter ....................... 131.0000 in
Wet Perimeter ................... 124.7623 in
Wet Area ........................ 6.5992 ft2
Percent Full .................... 74.0096 %
Page 1
Inlet404Q10.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 4.2600 cfs
Coefficient ..................... 0.6100
Height .......................... 4.0000 in
Computed Results:
Depth of Flow ................... 2.9133 in
Full Flow ....................... 6.8535 cfs
Velocity ........................ 1.6074 fps
Width ........................... 131.0000 in
Area ............................ 3.6389 ft2
Perimeter ....................... 139.0000 in
Wet Perimeter ................... 136.8267 in
Wet Area ........................ 2.6503 ft2
Percent Full .................... 72.8333 %
Page 1
Inlet404Q100.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 7.2300 cfs
Coefficient ..................... 0.6100
Height .......................... 12.0000 in
Computed Results:
Depth of Flow ................... 4.7439 in
Full Flow ....................... 29.0876 cfs
Velocity ........................ 2.0511 fps
Width ........................... 107.0000 in
Area ............................ 8.9167 ft2
Perimeter ....................... 131.0000 in
Wet Perimeter ................... 116.4878 in
Wet Area ........................ 3.5250 ft2
Percent Full .................... 39.5324 %
Page 1
Inlet405Q10.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 3.0000 cfs
Coefficient ..................... 0.6100
Height .......................... 4.0000 in
Computed Results:
Depth of Flow ................... 2.1895 in
Full Flow ....................... 7.4081 cfs
Velocity ........................ 1.3934 fps
Width ........................... 141.6000 in
Area ............................ 3.9333 ft2
Perimeter ....................... 149.6000 in
Wet Perimeter ................... 145.9789 in
Wet Area ........................ 2.1530 ft2
Percent Full .................... 54.7365 %
Page 1
Inlet405Q100.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 5.1250 cfs
Coefficient ..................... 0.6100
Height .......................... 12.0000 in
Computed Results:
Depth of Flow ................... 3.1289 in
Full Flow ....................... 38.4936 cfs
Velocity ........................ 1.6657 fps
Width ........................... 141.6000 in
Area ............................ 11.8000 ft2
Perimeter ....................... 165.6000 in
Wet Perimeter ................... 147.8577 in
Wet Area ........................ 3.0767 ft2
Percent Full .................... 26.0738 %
Page 1
Inlet406Q10.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 3.3800 cfs
Coefficient ..................... 0.6100
Height .......................... 4.0000 in
Computed Results:
Depth of Flow ................... 1.9351 in
Full Flow ....................... 10.0449 cfs
Velocity ........................ 1.3100 fps
Width ........................... 192.0000 in
Area ............................ 5.3333 ft2
Perimeter ....................... 200.0000 in
Wet Perimeter ................... 195.8702 in
Wet Area ........................ 2.5802 ft2
Percent Full .................... 48.3780 %
Page 1
Inlet406Q100.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 5.7300 cfs
Coefficient ..................... 0.6100
Height .......................... 12.0000 in
Computed Results:
Depth of Flow ................... 2.7513 in
Full Flow ....................... 52.1947 cfs
Velocity ........................ 1.5620 fps
Width ........................... 192.0000 in
Area ............................ 16.0000 ft2
Perimeter ....................... 216.0000 in
Wet Perimeter ................... 197.5025 in
Wet Area ........................ 3.6684 ft2
Percent Full .................... 22.9273 %
Page 1
Inlet803Q10.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 2.4400 cfs
Coefficient ..................... 0.6100
Height .......................... 4.0000 in
Computed Results:
Depth of Flow ................... 1.3219 in
Full Flow ....................... 12.8438 cfs
Velocity ........................ 1.0827 fps
Width ........................... 245.5000 in
Area ............................ 6.8194 ft2
Perimeter ....................... 253.5000 in
Wet Perimeter ................... 248.1437 in
Wet Area ........................ 2.2536 ft2
Percent Full .................... 33.0469 %
Page 1
Inlet803Q100.txt
Weir Calculator
Given Input Data:
Weir Type ....................... Rectangular
Equation ........................ Suppressed
Solving for ..................... Depth of Flow
Flowrate ........................ 4.6000 cfs
Coefficient ..................... 0.6100
Height .......................... 12.0000 in
Computed Results:
Depth of Flow ................... 2.1605 in
Full Flow ....................... 60.2142 cfs
Velocity ........................ 1.3842 fps
Width ........................... 221.5000 in
Area ............................ 18.4583 ft2
Perimeter ....................... 245.5000 in
Wet Perimeter ................... 225.8210 in
Wet Area ........................ 3.3233 ft2
Percent Full .................... 18.0042 %
Page 1
APPENDIX D
HYDROLOGY MAP