Loading...
HomeMy WebLinkAbout5/1/2013 - AGREEMENTS (12) i Palm Springs International Airport Terminal Apron Rehabilitation and Taxiway "G" Reconstruction Project Hydrology Report March 2013 This report has been prepared under the direction of the following Registered Civil Engineer. The undersigned attests to the technical information contained herein and the qualifications of any technical specialist providing engineering data upon which recommendations, conclusions, and decisions are based: _____________________________ Christopher J. Swonke, P.E. Submitted by Parsons Brinckerhoff 451 East Vanderbilt Way, Suite 200 San Bernardino, California 92408 ii TABLE OF CONTENTS 1.0 INTRODUCTION 2.0 PURPOSE 3.0 CRITERIA 4.0 SITE LAYOUT AND CONSIDERATIONS 5.0 SITE CONSTRAINTS 6.0 STORMWATER TREATMENT STRATEGY 7.0 METHODOLOGY 8.0 RESULTS APPENDICES A REFERENCE MATERIAL B RATIONAL METHOD SUPPORTING ANALYSIS C INLET CALCULATIONS D HYDROLOGY MAP 1.0 INTRODUCTION Palm Springs International Airport is located south of Interstate 10 in the City of Palm Springs, Riverside County, California. The airport covers 940 acres of land adjacent to the Whitewater River wash. The site is in the Whitewater River watershed where annual rainfall is approximately 5 inches. The proposed design project is a rehabilitation and reconstruction project to remove and replace the terminal apron and resurface Taxiway "G". There will be no change to the impervious footprint and the majority of the pavement area will be replaced or resurfaced at existing line and grade. The project site is located approximately 400 ft above sea level in the Coachella Valley. Runoff from the project site and adjacent areas flow into existing storm drain infrastructure and terminates at an on-site retention basin. Gutters and ridgelines are used to direct sheet flow to the south and east. Eight drop inlets and four trench drains on the project site intercept and convey runoff to a 54 inch storm drain main line. A fuel interceptor treats all runoff from the apron area prior to reaching the basin. Natural drainage courses exist immediately adjacent and downstream from the retention basin. When flow exceeds the storage capacity of the infiltration basin, a master planned storm drain will convey runoff east down Ramon Rd via line 34 (as identified by Riverside County) to the Whitewater River wash. The Whitewater River is tributary to the endorheic Salton Sea. Figure 1.1 USGS Map; project area shown in red. The Hydrologic Soils Group Map in the Riverside County Flood Control and Water Conservation District (RCFC&WCD) Hydrology Manual illustrates that soils group A is dominant throughout the site. Hydrologic soil group A is characterized by high infiltration rates even when thoroughly wetted. They consist chiefly of deep, well to excessively drained sands or gravels and have a high rate of water transmission. As reported by the Natural Resource Conservation Service web soil survey, Myoma fine sand is the soil type prevalent within the project boundary. The characterization of Myoma as sand and fine sand is consistent with the geotechnical report by RMA group (11/2012) which found poorly graded sand or silty sand to a depth of 16.5 feet for the two samples taken at that depth. Saturated hydraulic conductivity (Ksat) is estimated to range from 5.95 to 19.98 in/hr. The type of cover on the project site is most closely matched with poor quality Chaparrel, Narrowleaf. The pervious area infiltration rate for AMC I is estimated to be 0.74 inches/hour. According to the 2008-2010 Integrated Report and Clean Water Act 303(d) List, the immediate area around the project site is not assessed or impaired. Impaired waters begin with the Coachella Valley Storm Water Channel approximately 14 miles downstream. The existing oil-water separator and infiltration basin are recommended BMPs and are used to treat chemical and biological pollutants. A WQMP was developed for this project and should be referenced for complete information on the impairments and treatment. 2.0 PURPOSE The results of this study verify the effectiveness of the existing drainage system. The analysis will be used to ensure that storm runoff will not impede operations by not impounding pavements or encroaching on building pads in post-construction. This report will present the baseline rational method calculations for the 2-year, 10-year and 100- year rainfall conditions to demonstrate proper site drainage. Inlet capacities will be evaluated to verify the grading of the site has no risk of pavement or structural inundation. 3.0 CRITERIA Stormwater management facilities must be sized to safely pass the 100 year storm event. Given the magnitude of the 100-year storm event, it is not reasonable to size all infrastructure based on the volume of runoff produced but rather to size secondary overflow systems to accommodate the peak flow rate. At a minimum, 100 year storm events will not inundate any structures. Per FAA requirements, a 10-year storm event will not cause impoundment to airfield pavement. In most cases, this means that water depth should not exceed 4 inches during the event. Any remaining on-site standing water should pose no threat to air navigation and will have a draw down time that does not exceed 24 hours. All water runoff will be subject to a Water Quality Management Plan (WQMP). The WQMP will verify that runoff meets quality and quantity constraints utilizing existing on- site Best Management Practices (BMPs). 4.0 SITE LAYOUT AND CONSIDERATIONS The project site can be broken down into two main areas: the concourse apron area and the Taxiway "G" area. The concourse apron area utilizes the aforementioned storm drain system and will be discussed at length in this report. The Taxiway "G" area is not a part of this report due to its past performance and runoff conditions. Runoff from the taxiway surface flows to either off-site storm drain infrastructure or to an on-site infiltration area. The on-site infiltration area affected by Taxiway "G" runoff is to the southeast between Taxiways "W", "W-3" and "H". This area is sumped by several feet to where it's reasonable to assume it collects all runoff for nearly any storm condition. Observed past performance is consistent with this analysis. The concourse apron area is divided into four subareas following four unique drainage paths. Each subarea is tributary to the same 54 inch storm drain main line, oil-water separator and 244,000 cubic foot infiltration basin. Additional runoff from adjacent areas (including the airfield) also contribute flow to the storm drain system and water treatment BMPs. Some additional flow follows natural drainage channels directly to the infiltration basin. Logically, the total contribution to the oil-water separator and infiltration basin will be considered. See the Hydrology exhibit in Appendix D and project WQMP for more information. Table 4.1: Subarea Area Analysis Subarea Impervious Area (acres) Pervious Area (acres) Percent Impervious* A 4.7 0 100% B 9.0 0.6 93% C 49.8 21.4 57% D 9.9 0 100% *Effective impervious areas are generally smaller than actual; a storm averaged runoff coefficient for 100% impervious areas will be set to 0.87, see reference material in Appendix A. 5.0 SITE CONSTRAINTS The type of land use that comprises the project site and the immediate area is Aviation, which is subject to sand blast, foreign object damage and vertical clearance regulation. Sand blast refers to the small particulates that can be blown or sucked up by jet engines. Any activity that incorporates the use of potentially engine blown particulates is forbidden. Foreign object damage (FOD) refers to objects that can be blown or sucked up by jet engines or helicopter blades and should be avoided in the Airport Operation Area (AOA). Vertical clearance refers to the distance an object may impede into upright space without interfering with airfield imaginary surfaces. Additionally, when retention is adjacent to an active taxiway/runway, no objects can be over 3” above native soil elevation, including outlets. Standing water in and around the AOA can be an issue due to the avian fauna that can be attracted. Therefore, the maximum allowable drawdown time is 24 hours. Typically, a basin that impounds water without a drawdown pipe is not allowed on airport property. However, given the high infiltration rate of the soils in the area, the 244,000 cubic foot basin and localized sump areas are capable of drawing down in the required 24-hour time limit. Since runoff rates and volumes will not be increased over the existing conditions at any one of the storm drain inlets, the infiltration capacities will remain sufficient for Riverside County hydrology and FAA standards. 6.0 STORMWATER TREATMENT STRATEGY In adjacent taxiway and runway areas, runoff from the airfield sheet flows into infiltration beds with a top layer of mined cobble. These natural channels provide a relatively large surface area for infiltration and reduction of runoff. Natural infiltration is also effective at transforming and reducing chemical and biological pollutants. The storm drain and inline oil water separator drain and treat a tributary area of 139 acres. The storm drain is tributary to the basin with a total of 147 acres (some additional inlets downstream of the separator). The separator has a maximum oil storage capacity of 850 gallons and a half-full sediment capacity of 95 cubic feet. The system is maintained yearly with full removal of oil and sediments. The oil-water separator treats runoff from the Regional and Bono Concourse terminals, parking lot and other parts of the airfield that may contain oil or other petroleum products. According to Stoke's Law, oil removal rates will vary depending on the quantity of runoff and type of mixed pollutants. The oil-water separator will assist in removing oil and fuel particles that can coalesce into sizes 250 micrometers and larger in low flow conditions (1 cfs). Based on a BMP design flow of 16.95 cfs, the oil-water separator will begin to settle out fuel particles (specific gravity of 0.62) that coalesce into groups of 900 micrometers. Roughly 600 feet downstream of the oil-water separator, the airport has installed a 244,000 cubic-foot stormwater infiltration basin. Per WQMP worksheet 1 calculations, the basin has a design volume size of 127,000 cubic feet for all tributary area and as such is oversized to improve infiltration. There is no low-flow outlet, meaning the entire 4 foot storage depth is infiltrated. As with the natural channels, the infiltration basin is effective in treating chemical and biological pollutants. See the project WQMP for further analysis of these BMPs. 7.0 METHODOLOGY The Riverside County Rational Method was used to analyze the site per the RCFC&WCD Hydrology Manual (1978). Advanced Engineering Software (AES) HydroWIN 2012 was used for development of the rational method analysis (Appendix B). Precipitation frequency estimates were taken from the RCFC&WCD Hydrology Manual, plate D-4.1 (4 of 6). Data was for the Palm Springs area. The hydrologic soils group type "A" was identified on plate C-1.35. The type of cover on the project site is most closely matched with poor quality Chaparrel, Narrowleaf per plate D-5.5. Adjusting for AMC I conditions per Plate D-5.7, the runoff index approximates to 52. By extrapolating from E- 6.2, the pervious area infiltration rate is estimated to be 0.74 inches/hour. Copies of the plates used in this analysis are provided in Appendix A. Drainage subareas are named alphabetically and contain numerical nodes that correspond to their letter designation (i.e. subarea B contains 201, 202, etc.). Subarea H drains into a drop inlet that is tributary to subarea A. Therefore subarea H is analyzed as a part of subarea A. For site and drainage system information, see the hydrology map in appendix D. Initial subarea flowlines were set at a maximum of roughly 150 feet to improve the quality of the software analysis. Flowline lengths did not exceed 1000 feet. The analysis for Subarea D is conservative. Inlets 403, 404 and 405 are outside of the project area and a field survey is not available to conclude pipe slope. We have assumed for the storm drain system between these nodes: 18 inch RCP and a 0.3% slope. This represents a worst case scenario. The existing conditions were analyzed to quantify the peak flow rate for the 2, 10 and 100 year storm events. Given the number of storm events, a storm averaged runoff coefficient for 100% impervious areas was set at 0.87 ("commercial" designation per AES design software). Please see "Runoff Coefficient Rationale" in Reference Material Appendix A. Inlet conditions for the 10 year and 100 year storm were analyzed using the Autocad Land Desktop 2008 Rectangular Weir Calculator. Storm event, inlet perimeter length and a weir coefficient of 0.61 were used to solve for the depth of flow over the grate. Using a weir to model the depth of flow at the inlet is a conservative approach, because with this method there is no flow draining into the inlet that would cause the water depth to drop. Figure 2. Rectangular Weir Calculator; Inlet 406. 8.0 RESULTS The results of the rational method analysis show that a 2-year storm event produces a sum total of 61.7 cfs peak runoff flow in our drainage areas. From the 2-year to 10-year event, the peak runoff increases to 122.9 cfs. The 100-year storm event produces a peak runoff of 215.45 cfs when not accounting for inlet restrictions. Rational method supporting calculations can be found in analysis in Appendix B. See table 8.1 below for a summary of the rational method peak flow rates for the site. Table 8.1: Rational Method Subarea Peak Flow Rate Calculations Node 100 Year Event 10 Year Event 2 Year Event ------------- Q (cfs) Tc (mins) Q (cfs) Tc (mins) Q (cfs) Tc (mins) A (105) 21.85 8.25 13.36 8.64 7.34 9.19 B (205) 31.06 15.04 18.50 16.52 9.80 18.88 C (307) 119.81 19.73 65.72 22.38 31.32 26.88 D (406) 42.73 9.05 25.34 10.17 13.21 12.33 Total Runoff 215.45 --- 122.92 --- 61.67 --- Subarea A collects runoff for the on-site apron, adjacent parking and street pavement areas. The confluence of the adjacent area flow is at node 104, between the inlets at 103 and 105 on the apron. Weir calculations found for inlet 103 and 105 during a 10- year storm event have a depth of flow of 1.93 and 3.21 inches respectively, please see Appendix A in this report for all weir calculations. During a 100 year storm event weir calculations indicate that inlet 105 will have a depth of flow of 4.48 inches. Inlet 105 depth of flow is conservative because the analysis does not take into account an existing 3.5’x2’ inlet located 100 feet to the southwest of inlet 105. As the water level rises past 3 inches of depth at inlet 105 the runoff will begin to be collected by the secondary inlet mentioned above. Subarea B collects sheet flow into natural infiltration areas to the south of the Regional Concourse terminal. In a 100-year storm event the downstream inlet at node 307 will be inundated to a depth of 11.92 inches. The sump condition in the area will be used for retention purposes. Furthermore, the natural channel is located south of Taxiway “A-1” and runs east parallel to the taxiway, in a situation where this channel fills the runoff will spill over the taxiway and continue to the next inlet 636 feet downstream. Downstream Subarea C runoff is picked up by a 4 foot by 5.5 foot inlet and a 30 inch storm drain lateral. Inlet weir calculations show that in a 100 year storm event there could be 18.62 inches of inundation. This indicates that the water level will stay below pavement elevation of the adjacent taxiway (note: not an FAA requirement). In a worst case scenario, the runoff will flow over Taxiway "A-1" into another natural channel area and be picked up by a second inlet. See table 8.2 below for a summary of the depth of flow for the onsite inlets. Table 8.2: Inlet Weir Calculations and Impoundment Conditions Node 100-Year Event 10-Year Event ------------- Depth (inches) Max. Allowable (inches) Depth (inches) Max. Allowable (inches) 103 2.66 12 1.93 4.0 105 (A) 4.48 60 3.21 4.0 205 (B) 11.92 >60 8.44 22.0 307 (C) 18.62 >60 12.48 22.0 403 8.88 24 5.54 4.0 404 4.74 54 2.91 4.0 405 3.12 60 2.19 4.0 406 (D) 2.75 18 1.94 4.0 803 2.16 6 1.32 6 The results of the inlet weir calculations show there is no threat to inundation of any structure during a 100 year storm. Inlet 406 in Subarea D is the only inlet within a 50 foot range of any structure (see Hydrology Exhibit, Appendix D). Given an 18 inch drop from finished floor, the analysis shows excellent conditions with only 2.75 inches of inlet inundation. In a 10 year event, the maximum allowable depth of flow is only exceeded at inlet 403 in Subarea D. As standard practice there should never be more than 4 inches of water depth over a grate. However our analysis indicates there would be 5.54 inches of water depth at inlet 403 during a 10year storm. Inlet 403 is located outside the non-movement area and serves a non-critical area of the apron and would acceptable to permit temporary peak flow conditions to exceed the recommended value. There is no structure nearby inlet 403 that the 10 year or 100 year storm has the potential to inundate. In addition, pipe flow in Subarea D represents a worst case scenario. See the methodology section for more information. A stand alone hydraulic analysis was not performed for the existing storm drain system because it is included in the rational method calculations. Rational method pipe flow calculations indicate that pipe capacities for all pipes with known values were utilized to a maximum of pipe flow depth of 47.3% during a 10-year storm. Table 8.3: Pipe Flow Depth for 10-Year Storm Event Pipe Pipe Size (inch) Pipe Flow (cfs) Depth of Flow (inch) Percent Full 103-104 24 3.37 6.5 27.1% 803-104 15 2.81 7.1 47.3% 104-105 24 6.14 8.8 36.7% 403-404* 18 11.16 Full Full 404-405* 18 15.41 Full Full 405-406* 18 22.0 Full Full *Pipe information assumed to be worst case scenario In summary, all inlets are adequately sized to meet the hydrologic requirements of the site. APPENDIX A REFERENCE MATERIALS Riverside County, Coachella Valley Area, California MaB—Myoma fine sand, 0 to 5 percent slopes Map Unit Setting Elevation:-200 to 1,800 feet Mean annual precipitation:2 to 4 inches Mean annual air temperature:72 to 75 degrees F Frost-free period:270 to 320 days Map Unit Composition Myoma and similar soils:85 percent Minor components:15 percent Description of Myoma Setting Landform:Alluvial fans Landform position (two-dimensional):Toeslope Landform position (three-dimensional):Tread Down-slope shape:Linear Across-slope shape:Linear Parent material:Wind blown sandy alluvium Properties and qualities Slope:0 to 5 percent Depth to restrictive feature:More than 80 inches Drainage class:Somewhat excessively drained Capacity of the most limiting layer to transmit water (Ksat):High to very high (5.95 to 19.98 in/hr) Depth to water table:More than 80 inches Frequency of flooding:None Frequency of ponding:None Calcium carbonate, maximum content:5 percent Maximum salinity:Nonsaline (0.0 to 2.0 mmhos/cm) Available water capacity:Low (about 4.8 inches) Interpretive groups Farmland classification:Prime farmland if irrigated Land capability classification (irrigated):3e Land capability (nonirrigated):7e Hydrologic Soil Group:A Typical profile 0 to 18 inches:Fine sand 18 to 60 inches:Sand Minor Components Coachella Percent of map unit:4 percent Carsitas Percent of map unit:4 percent Unnamed, noncalcareous soils Percent of map unit:4 percent Custom Soil Resource Report 12 Riverwash Percent of map unit:3 percent Landform:Channels MaD—Myoma fine sand, 5 to 15 percent slopes Map Unit Setting Elevation:-200 to 1,800 feet Mean annual precipitation:2 to 4 inches Mean annual air temperature:72 to 75 degrees F Frost-free period:270 to 320 days Map Unit Composition Myoma and similar soils:85 percent Minor components:15 percent Description of Myoma Setting Landform:Alluvial fans Landform position (two-dimensional):Footslope Landform position (three-dimensional):Tread Down-slope shape:Linear Across-slope shape:Linear Parent material:Wind blown sandy alluvium Properties and qualities Slope:5 to 15 percent Depth to restrictive feature:More than 80 inches Drainage class:Somewhat excessively drained Capacity of the most limiting layer to transmit water (Ksat):High to very high (5.95 to 19.98 in/hr) Depth to water table:More than 80 inches Frequency of flooding:None Frequency of ponding:None Maximum salinity:Nonsaline (0.0 to 2.0 mmhos/cm) Available water capacity:Low (about 4.8 inches) Interpretive groups Farmland classification:Prime farmland if irrigated Land capability classification (irrigated):3e Land capability (nonirrigated):7e Hydrologic Soil Group:A Typical profile 0 to 18 inches:Fine sand 18 to 60 inches:Sand Custom Soil Resource Report 13 Minor Components Coachella Percent of map unit:5 percent Unnamed, calcareous soils Percent of map unit:5 percent Riverwash Percent of map unit:3 percent Landform:Channels Carsitas Percent of map unit:2 percent Custom Soil Resource Report 14 N E V A D A U T A H A R I Z O N A OREGON M EXICO The National Atlas of the United States of AmericaU.S. Department of the Interior U.S. Geological Survey CALIFORNIAWhere We Arenationalatlas.gov TM RO pageprecip_ca3.pdf INTERIOR-GEOLOGICAL SURVEY, RESTON, VIRGINIA-2005 MILES 0 25 50 75 100 125 150 Albers equal area projection R Goose Lake Clair Engle Lake Shasta Lake P i t R iv e r E el Russi an R Clear Lake Lake Oroville L a k e T a h o e S a n R KernO w e ns RiverS a l t o n S e a ColoradoM e rc e d Lake Berryessa M o n o L a k e L a k e H a v a s u O w e ns L a k e Honey Lake Lake Almanor Eagle Lake Trinity Mid dle Alkali Lake Upp er Lak eClear Lake Reservoir Salin a s R RRiverR Kla m a t h Riv e r Joaquin RiverSacrament oRi ve r K ingsR S tanislaus RM o k e lu m n e RFeather R C oachella C a n al San Francisco Bay Buena Vista Lake San Pedro Channel Outer Santa Barbara Passage Ama r g o sa R Fria n t-Ke r n CanalMonterey Bay Bodega Bay PACIFIC OCEANS anta BarbaraChannel PRECIPITATION Precipitation varies widely across the United States, from a low of 2.3 inches per year in California's Death Valley to a high of 460 inches on Hawaii's Mount Waialeale. Nevada ranks as the driest state, with an average annual precipitation of 9.5 inches, and Hawaii is the wettest, at 70.3 inches. The average annual precipitation for California is 21.44 inches. Average Annual Precipitation (in inches) 1961-1990 180.1-200 140.1-180 120.1-140 100.1-120 80.1-100 70.1-80 60.1-70 50.1-60 40.1-50 35.1-40 30.1-35 25.1-30 20.1-25 15.1-20 10.1-15 5.1-10 5 and less APPENDIX B RATIONAL METHOD SUPPORTING ANALYSIS Rational Method Analysis Calculations Node -------------Q (cfs)Tc (mins)Q (cfs)Tc (mins)Q (cfs)Tc (mins) A (105)21.85 8.25 13.36 8.64 7.34 9.19 B (205)31.06 15.04 18.5 16.52 9.8 18.88 C (307)119.81 19.73 65.72 22.38 31.32 26.88 D (406)42.73 9.05 25.34 10.17 13.21 12.33 Total 215.45 --122.92 --61.67 -- % Increase 75.3%--99.3%---- 100 Year Event 10 Year Event 2 Year Event ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1501 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * PSP-AREA A * * Q02 * * CLH 2013-02-26 * ************************************************************************** FILE NAME: PSP-A02.DAT TIME/DATE OF STUDY: 15:45 02/26/2013 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 2.00 1-HOUR INTENSITY(INCH/HOUR) = 0.581 SLOPE OF INTENSITY DURATION CURVE = 0.5806 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 151.00 UPSTREAM ELEVATION(FEET) = 418.00 DOWNSTREAM ELEVATION(FEET) = 415.20 ELEVATION DIFFERENCE(FEET) = 2.80 TC = 0.303*[( 151.00**3)/( 2.80)]**.2 = 5.007 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.455 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8518 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 0.54 TOTAL AREA(ACRES) = 0.26 TOTAL RUNOFF(CFS) = 0.54 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 415.20 DOWNSTREAM(FEET) = 411.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 245.00 CHANNEL SLOPE = 0.0143 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.919 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8463 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.21 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.54 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 2.65 Tc(MIN.) = 7.66 SUBAREA AREA(ACRES) = 0.82 SUBAREA RUNOFF(CFS) = 1.33 TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 1.88 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 1.74 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 396.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 404.82 DOWNSTREAM(FEET) = 402.76 FLOW LENGTH(FEET) = 212.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 4.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.15 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.88 PIPE TRAVEL TIME(MIN.) = 0.85 Tc(MIN.) = 8.51 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 608.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.51 RAINFALL INTENSITY(INCH/HR) = 1.80 TOTAL STREAM AREA(ACRES) = 1.08 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.88 **************************************************************************** FLOW PROCESS FROM NODE 801.00 TO NODE 802.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 119.00 UPSTREAM ELEVATION(FEET) = 415.60 DOWNSTREAM ELEVATION(FEET) = 414.00 ELEVATION DIFFERENCE(FEET) = 1.60 TC = 0.303*[( 119.00**3)/( 1.60)]**.2 = 4.854 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.457 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8518 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 0.21 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.21 **************************************************************************** FLOW PROCESS FROM NODE 802.00 TO NODE 803.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 414.00 DOWNSTREAM(FEET) = 411.40 CHANNEL LENGTH THRU SUBAREA(FEET) = 181.00 CHANNEL SLOPE = 0.0144 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.927 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8464 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 0.89 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.16 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 2.60 Tc(MIN.) = 7.60 SUBAREA AREA(ACRES) = 0.81 SUBAREA RUNOFF(CFS) = 1.32 TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 1.53 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.05 FLOW VELOCITY(FEET/SEC.) = 1.40 LONGEST FLOWPATH FROM NODE 801.00 TO NODE 803.00 = 300.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 803.00 TO NODE 104.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 405.22 DOWNSTREAM(FEET) = 402.76 FLOW LENGTH(FEET) = 246.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 5.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.14 GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 1.53 PIPE TRAVEL TIME(MIN.) = 0.99 Tc(MIN.) = 8.59 LONGEST FLOWPATH FROM NODE 801.00 TO NODE 104.00 = 546.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 8.59 RAINFALL INTENSITY(INCH/HR) = 1.80 TOTAL STREAM AREA(ACRES) = 0.91 PEAK FLOW RATE(CFS) AT CONFLUENCE = 1.53 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 1.88 8.51 1.805 1.08 2 1.53 8.59 1.795 0.91 *********************************WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 3.39 8.51 1.805 2 3.40 8.59 1.795 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 3.39 Tc(MIN.) = 8.51 TOTAL AREA(ACRES) = 2.0 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 608.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 402.76 DOWNSTREAM(FEET) = 400.78 FLOW LENGTH(FEET) = 203.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.95 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.39 PIPE TRAVEL TIME(MIN.) = 0.68 Tc(MIN.) = 9.19 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 811.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.726 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8441 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.71 SUBAREA RUNOFF(CFS) = 3.95 TOTAL AREA(ACRES) = 4.7 TOTAL RUNOFF(CFS) = 7.34 TC(MIN.) = 9.19 ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 4.7 TC(MIN.) = 9.19 PEAK FLOW RATE(CFS) = 7.34 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1501 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * PSP-AREA B * * Q02 * * CLH 2013-02-26 * ************************************************************************** FILE NAME: PSP-B02.DAT TIME/DATE OF STUDY: 15:54 02/26/2013 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 2.00 1-HOUR INTENSITY(INCH/HOUR) = 0.581 SLOPE OF INTENSITY DURATION CURVE = 0.5806 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 150.00 UPSTREAM ELEVATION(FEET) = 412.40 DOWNSTREAM ELEVATION(FEET) = 409.50 ELEVATION DIFFERENCE(FEET) = 2.90 TC = 0.303*[( 150.00**3)/( 2.90)]**.2 = 4.952 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.457 USER-SPECIFIED RUNOFF COEFFICIENT = .8518 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 0.50 TOTAL AREA(ACRES) = 0.24 TOTAL RUNOFF(CFS) = 0.50 **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 409.50 DOWNSTREAM(FEET) = 407.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 225.00 CHANNEL SLOPE = 0.0102 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 5.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.876 USER-SPECIFIED RUNOFF COEFFICIENT = .8459 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.36 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.27 AVERAGE FLOW DEPTH(FEET) = 0.04 TRAVEL TIME(MIN.) = 2.96 Tc(MIN.) = 7.96 SUBAREA AREA(ACRES) = 1.07 SUBAREA RUNOFF(CFS) = 1.70 TOTAL AREA(ACRES) = 1.3 PEAK FLOW RATE(CFS) = 2.20 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.06 FLOW VELOCITY(FEET/SEC.) = 1.51 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 = 375.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 407.20 DOWNSTREAM(FEET) = 405.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 499.00 CHANNEL SLOPE = 0.0044 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 5.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.359 USER-SPECIFIED RUNOFF COEFFICIENT = .8392 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.07 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.41 AVERAGE FLOW DEPTH(FEET) = 0.21 TRAVEL TIME(MIN.) = 5.92 Tc(MIN.) = 13.87 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 1.71 TOTAL AREA(ACRES) = 2.8 PEAK FLOW RATE(CFS) = 3.91 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.23 FLOW VELOCITY(FEET/SEC.) = 1.53 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 204.00 = 874.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 405.00 DOWNSTREAM(FEET) = 401.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 532.00 CHANNEL SLOPE = 0.0070 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.136 USER-SPECIFIED RUNOFF COEFFICIENT = .8358 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.87 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.77 AVERAGE FLOW DEPTH(FEET) = 0.33 TRAVEL TIME(MIN.) = 5.00 Tc(MIN.) = 18.88 SUBAREA AREA(ACRES) = 6.20 SUBAREA RUNOFF(CFS) = 5.89 TOTAL AREA(ACRES) = 9.0 PEAK FLOW RATE(CFS) = 9.80 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.39 FLOW VELOCITY(FEET/SEC.) = 1.93 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 1406.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 9.0 TC(MIN.) = 18.88 PEAK FLOW RATE(CFS) = 9.80 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1501 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * PSP-AREA C * * Q02 * * CLH 2013-02-26 * ************************************************************************** FILE NAME: PSP-C02.DAT TIME/DATE OF STUDY: 16:03 02/26/2013 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 2.00 1-HOUR INTENSITY(INCH/HOUR) = 0.581 SLOPE OF INTENSITY DURATION CURVE = 0.5806 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 105.00 UPSTREAM ELEVATION(FEET) = 424.30 DOWNSTREAM ELEVATION(FEET) = 423.20 ELEVATION DIFFERENCE(FEET) = 1.10 TC = 0.303*[( 105.00**3)/( 1.10)]**.2 = 4.853 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.457 USER-SPECIFIED RUNOFF COEFFICIENT = .8518 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 0.27 TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) = 0.27 **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 423.20 DOWNSTREAM(FEET) = 417.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 481.00 CHANNEL SLOPE = 0.0123 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.620 USER-SPECIFIED RUNOFF COEFFICIENT = .8427 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.15 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.53 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 5.25 Tc(MIN.) = 10.25 SUBAREA AREA(ACRES) = 2.61 SUBAREA RUNOFF(CFS) = 3.56 TOTAL AREA(ACRES) = 2.7 PEAK FLOW RATE(CFS) = 3.84 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.08 FLOW VELOCITY(FEET/SEC.) = 1.94 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 303.00 = 586.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 417.30 DOWNSTREAM(FEET) = 409.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 704.00 CHANNEL SLOPE = 0.0111 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.50 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.251 USER-SPECIFIED RUNOFF COEFFICIENT = .5879 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.05 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.05 AVERAGE FLOW DEPTH(FEET) = 0.28 TRAVEL TIME(MIN.) = 5.74 Tc(MIN.) = 15.98 SUBAREA AREA(ACRES) = 5.95 SUBAREA RUNOFF(CFS) = 4.38 TOTAL AREA(ACRES) = 8.7 PEAK FLOW RATE(CFS) = 8.21 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.33 FLOW VELOCITY(FEET/SEC.) = 2.20 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 304.00 = 1290.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 409.50 DOWNSTREAM(FEET) = 407.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0054 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.156 USER-SPECIFIED RUNOFF COEFFICIENT = .8361 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.27 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.40 AVERAGE FLOW DEPTH(FEET) = 0.19 TRAVEL TIME(MIN.) = 2.33 Tc(MIN.) = 18.32 SUBAREA AREA(ACRES) = 6.33 SUBAREA RUNOFF(CFS) = 6.12 TOTAL AREA(ACRES) = 15.0 PEAK FLOW RATE(CFS) = 14.33 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.22 FLOW VELOCITY(FEET/SEC.) = 2.62 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 305.00 = 1626.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 306.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 407.70 DOWNSTREAM(FEET) = 404.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0083 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) = 5.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.075 USER-SPECIFIED RUNOFF COEFFICIENT = .7369 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 15.65 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.28 AVERAGE FLOW DEPTH(FEET) = 0.23 TRAVEL TIME(MIN.) = 2.46 Tc(MIN.) = 20.78 SUBAREA AREA(ACRES) = 3.33 SUBAREA RUNOFF(CFS) = 2.64 TOTAL AREA(ACRES) = 18.3 PEAK FLOW RATE(CFS) = 16.97 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.24 FLOW VELOCITY(FEET/SEC.) = 2.38 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 306.00 = 1962.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 306.00 TO NODE 307.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 404.90 DOWNSTREAM(FEET) = 399.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 899.00 CHANNEL SLOPE = 0.0066 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) = 5.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 0.925 USER-SPECIFIED RUNOFF COEFFICIENT = .4929 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 24.24 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.45 AVERAGE FLOW DEPTH(FEET) = 0.32 TRAVEL TIME(MIN.) = 6.11 Tc(MIN.) = 26.88 SUBAREA AREA(ACRES) = 31.45 SUBAREA RUNOFF(CFS) = 14.35 TOTAL AREA(ACRES) = 49.8 PEAK FLOW RATE(CFS) = 31.32 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.36 FLOW VELOCITY(FEET/SEC.) = 2.67 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 307.00 = 2861.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 49.8 TC(MIN.) = 26.88 PEAK FLOW RATE(CFS) = 31.32 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1501 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * PSP-AREA D * * Q02 * * CLH 2013-02-26 * ************************************************************************** FILE NAME: PSP-D02.DAT TIME/DATE OF STUDY: 16:06 02/26/2013 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 2.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 2.00 1-HOUR INTENSITY(INCH/HOUR) = 0.581 SLOPE OF INTENSITY DURATION CURVE = 0.5806 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 125.00 UPSTREAM ELEVATION(FEET) = 427.90 DOWNSTREAM ELEVATION(FEET) = 426.70 ELEVATION DIFFERENCE(FEET) = 1.20 TC = 0.303*[( 125.00**3)/( 1.20)]**.2 = 5.295 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.377 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8511 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 0.22 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.22 **************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 426.70 DOWNSTREAM(FEET) = 420.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 501.00 CHANNEL SLOPE = 0.0128 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.681 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8435 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.18 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.93 AVERAGE FLOW DEPTH(FEET) = 0.07 TRAVEL TIME(MIN.) = 4.32 Tc(MIN.) = 9.62 SUBAREA AREA(ACRES) = 4.06 SUBAREA RUNOFF(CFS) = 5.76 TOTAL AREA(ACRES) = 4.2 PEAK FLOW RATE(CFS) = 5.98 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.10 FLOW VELOCITY(FEET/SEC.) = 2.34 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 403.00 = 626.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 414.20 DOWNSTREAM(FEET) = 413.10 FLOW LENGTH(FEET) = 368.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 3.38 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.98 PIPE TRAVEL TIME(MIN.) = 1.81 Tc(MIN.) = 11.43 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 404.00 = 994.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.520 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8414 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.71 SUBAREA RUNOFF(CFS) = 2.19 TOTAL AREA(ACRES) = 5.9 TOTAL RUNOFF(CFS) = 8.17 TC(MIN.) = 11.43 **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 405.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 413.10 DOWNSTREAM(FEET) = 412.70 FLOW LENGTH(FEET) = 141.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 4.62 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 8.17 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 11.94 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 405.00 = 1135.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 405.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.482 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8409 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.69 SUBAREA RUNOFF(CFS) = 3.35 TOTAL AREA(ACRES) = 8.6 TOTAL RUNOFF(CFS) = 11.52 TC(MIN.) = 11.94 **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 406.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 412.70 DOWNSTREAM(FEET) = 412.30 FLOW LENGTH(FEET) = 151.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 6.52 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.52 PIPE TRAVEL TIME(MIN.) = 0.39 Tc(MIN.) = 12.33 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 406.00 = 1286.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 406.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 2 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.455 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8405 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.38 SUBAREA RUNOFF(CFS) = 1.69 TOTAL AREA(ACRES) = 9.9 TOTAL RUNOFF(CFS) = 13.21 TC(MIN.) = 12.33 ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 9.9 TC(MIN.) = 12.33 PEAK FLOW RATE(CFS) = 13.21 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1501 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * PSP-AREA A * * Q10 * * CLH 2013-02-26 * ************************************************************************** FILE NAME: PSP-A10.DAT TIME/DATE OF STUDY: 16:07 02/26/2013 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 1.010 SLOPE OF INTENSITY DURATION CURVE = 0.5806 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 151.00 UPSTREAM ELEVATION(FEET) = 418.00 DOWNSTREAM ELEVATION(FEET) = 415.20 ELEVATION DIFFERENCE(FEET) = 2.80 TC = 0.303*[( 151.00**3)/( 2.80)]**.2 = 5.007 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.271 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8641 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 0.96 TOTAL AREA(ACRES) = 0.26 TOTAL RUNOFF(CFS) = 0.96 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 415.20 DOWNSTREAM(FEET) = 411.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 245.00 CHANNEL SLOPE = 0.0143 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.418 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8592 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.17 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.74 AVERAGE FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 2.34 Tc(MIN.) = 7.35 SUBAREA AREA(ACRES) = 0.82 SUBAREA RUNOFF(CFS) = 2.41 TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 3.37 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.13 FLOW VELOCITY(FEET/SEC.) = 1.92 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 396.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 404.82 DOWNSTREAM(FEET) = 402.76 FLOW LENGTH(FEET) = 212.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 6.5 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.93 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 3.37 PIPE TRAVEL TIME(MIN.) = 0.72 Tc(MIN.) = 8.07 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 608.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 8.07 RAINFALL INTENSITY(INCH/HR) = 3.24 TOTAL STREAM AREA(ACRES) = 1.08 PEAK FLOW RATE(CFS) AT CONFLUENCE = 3.37 **************************************************************************** FLOW PROCESS FROM NODE 801.00 TO NODE 802.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 119.00 UPSTREAM ELEVATION(FEET) = 415.60 DOWNSTREAM ELEVATION(FEET) = 414.00 ELEVATION DIFFERENCE(FEET) = 1.60 TC = 0.303*[( 119.00**3)/( 1.60)]**.2 = 4.854 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.274 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8641 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 0.37 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.37 **************************************************************************** FLOW PROCESS FROM NODE 802.00 TO NODE 803.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 414.00 DOWNSTREAM(FEET) = 411.40 CHANNEL LENGTH THRU SUBAREA(FEET) = 181.00 CHANNEL SLOPE = 0.0144 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.503 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8598 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 1.61 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.48 AVERAGE FLOW DEPTH(FEET) = 0.05 TRAVEL TIME(MIN.) = 2.04 Tc(MIN.) = 7.04 SUBAREA AREA(ACRES) = 0.81 SUBAREA RUNOFF(CFS) = 2.44 TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 2.81 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.07 FLOW VELOCITY(FEET/SEC.) = 1.83 LONGEST FLOWPATH FROM NODE 801.00 TO NODE 803.00 = 300.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 803.00 TO NODE 104.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 405.22 DOWNSTREAM(FEET) = 402.76 FLOW LENGTH(FEET) = 246.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 7.1 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 4.89 GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 2.81 PIPE TRAVEL TIME(MIN.) = 0.84 Tc(MIN.) = 7.88 LONGEST FLOWPATH FROM NODE 801.00 TO NODE 104.00 = 546.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.88 RAINFALL INTENSITY(INCH/HR) = 3.28 TOTAL STREAM AREA(ACRES) = 0.91 PEAK FLOW RATE(CFS) AT CONFLUENCE = 2.81 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 3.37 8.07 3.238 1.08 2 2.81 7.88 3.282 0.91 *********************************WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 6.10 7.88 3.282 2 6.14 8.07 3.238 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 6.14 Tc(MIN.) = 8.07 TOTAL AREA(ACRES) = 2.0 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 608.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 402.76 DOWNSTREAM(FEET) = 400.78 FLOW LENGTH(FEET) = 203.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.8 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.84 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 6.14 PIPE TRAVEL TIME(MIN.) = 0.58 Tc(MIN.) = 8.64 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 811.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.110 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8571 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.71 SUBAREA RUNOFF(CFS) = 7.22 TOTAL AREA(ACRES) = 4.7 TOTAL RUNOFF(CFS) = 13.36 TC(MIN.) = 8.64 ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 4.7 TC(MIN.) = 8.64 PEAK FLOW RATE(CFS) = 13.36 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1501 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * PSP-AREA B * * Q10 * * CLH 2013-02-26 * ************************************************************************** FILE NAME: PSP-B10.DAT TIME/DATE OF STUDY: 16:11 02/26/2013 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 1.010 SLOPE OF INTENSITY DURATION CURVE = 0.5806 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 150.00 UPSTREAM ELEVATION(FEET) = 412.40 DOWNSTREAM ELEVATION(FEET) = 409.50 ELEVATION DIFFERENCE(FEET) = 2.90 TC = 0.303*[( 150.00**3)/( 2.90)]**.2 = 4.952 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.274 USER-SPECIFIED RUNOFF COEFFICIENT = .8641 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 0.89 TOTAL AREA(ACRES) = 0.24 TOTAL RUNOFF(CFS) = 0.89 **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 409.50 DOWNSTREAM(FEET) = 407.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 225.00 CHANNEL SLOPE = 0.0102 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 5.00 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.401 USER-SPECIFIED RUNOFF COEFFICIENT = .8591 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.48 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.55 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 2.41 Tc(MIN.) = 7.41 SUBAREA AREA(ACRES) = 1.07 SUBAREA RUNOFF(CFS) = 3.13 TOTAL AREA(ACRES) = 1.3 PEAK FLOW RATE(CFS) = 4.01 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 1.85 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 = 375.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 407.20 DOWNSTREAM(FEET) = 405.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 499.00 CHANNEL SLOPE = 0.0044 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 5.00 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.539 USER-SPECIFIED RUNOFF COEFFICIENT = .8525 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.64 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.71 AVERAGE FLOW DEPTH(FEET) = 0.26 TRAVEL TIME(MIN.) = 4.85 Tc(MIN.) = 12.26 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 3.25 TOTAL AREA(ACRES) = 2.8 PEAK FLOW RATE(CFS) = 7.26 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.29 FLOW VELOCITY(FEET/SEC.) = 1.79 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 204.00 = 874.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 405.00 DOWNSTREAM(FEET) = 401.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 532.00 CHANNEL SLOPE = 0.0070 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.136 USER-SPECIFIED RUNOFF COEFFICIENT = .8487 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 12.91 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.08 AVERAGE FLOW DEPTH(FEET) = 0.45 TRAVEL TIME(MIN.) = 4.26 Tc(MIN.) = 16.52 SUBAREA AREA(ACRES) = 6.20 SUBAREA RUNOFF(CFS) = 11.24 TOTAL AREA(ACRES) = 9.0 PEAK FLOW RATE(CFS) = 18.50 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.52 FLOW VELOCITY(FEET/SEC.) = 2.28 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 1406.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 9.0 TC(MIN.) = 16.52 PEAK FLOW RATE(CFS) = 18.50 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1501 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * PSP-AREA C * * Q10 * * CLH 2013-02-26 * ************************************************************************** FILE NAME: PSP-C10.DAT TIME/DATE OF STUDY: 16:13 02/26/2013 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 1.010 SLOPE OF INTENSITY DURATION CURVE = 0.5806 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 105.00 UPSTREAM ELEVATION(FEET) = 424.30 DOWNSTREAM ELEVATION(FEET) = 423.20 ELEVATION DIFFERENCE(FEET) = 1.10 TC = 0.303*[( 105.00**3)/( 1.10)]**.2 = 4.853 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.274 USER-SPECIFIED RUNOFF COEFFICIENT = .8641 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 0.48 TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) = 0.48 **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 423.20 DOWNSTREAM(FEET) = 417.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 481.00 CHANNEL SLOPE = 0.0123 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.041 USER-SPECIFIED RUNOFF COEFFICIENT = .8566 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.98 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.01 AVERAGE FLOW DEPTH(FEET) = 0.08 TRAVEL TIME(MIN.) = 3.99 Tc(MIN.) = 8.99 SUBAREA AREA(ACRES) = 2.61 SUBAREA RUNOFF(CFS) = 6.80 TOTAL AREA(ACRES) = 2.7 PEAK FLOW RATE(CFS) = 7.28 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 2.61 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 303.00 = 586.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 417.30 DOWNSTREAM(FEET) = 409.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 704.00 CHANNEL SLOPE = 0.0111 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.50 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.370 USER-SPECIFIED RUNOFF COEFFICIENT = .6550 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 11.96 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.43 AVERAGE FLOW DEPTH(FEET) = 0.39 TRAVEL TIME(MIN.) = 4.82 Tc(MIN.) = 13.81 SUBAREA AREA(ACRES) = 5.95 SUBAREA RUNOFF(CFS) = 9.23 TOTAL AREA(ACRES) = 8.7 PEAK FLOW RATE(CFS) = 16.51 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.45 FLOW VELOCITY(FEET/SEC.) = 2.65 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 304.00 = 1290.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 409.50 DOWNSTREAM(FEET) = 407.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0054 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.208 USER-SPECIFIED RUNOFF COEFFICIENT = .8494 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 22.45 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.13 AVERAGE FLOW DEPTH(FEET) = 0.29 TRAVEL TIME(MIN.) = 1.79 Tc(MIN.) = 15.60 SUBAREA AREA(ACRES) = 6.33 SUBAREA RUNOFF(CFS) = 11.87 TOTAL AREA(ACRES) = 15.0 PEAK FLOW RATE(CFS) = 28.38 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.33 FLOW VELOCITY(FEET/SEC.) = 3.41 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 305.00 = 1626.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 306.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 407.70 DOWNSTREAM(FEET) = 404.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0083 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) = 5.00 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.062 USER-SPECIFIED RUNOFF COEFFICIENT = .7698 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 31.03 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.88 AVERAGE FLOW DEPTH(FEET) = 0.34 TRAVEL TIME(MIN.) = 1.94 Tc(MIN.) = 17.54 SUBAREA AREA(ACRES) = 3.33 SUBAREA RUNOFF(CFS) = 5.29 TOTAL AREA(ACRES) = 18.3 PEAK FLOW RATE(CFS) = 33.67 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.35 FLOW VELOCITY(FEET/SEC.) = 2.97 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 306.00 = 1962.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 306.00 TO NODE 307.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 404.90 DOWNSTREAM(FEET) = 399.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 899.00 CHANNEL SLOPE = 0.0066 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) = 5.00 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 1.791 USER-SPECIFIED RUNOFF COEFFICIENT = .5691 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 49.86 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.10 AVERAGE FLOW DEPTH(FEET) = 0.47 TRAVEL TIME(MIN.) = 4.84 Tc(MIN.) = 22.38 SUBAREA AREA(ACRES) = 31.45 SUBAREA RUNOFF(CFS) = 32.05 TOTAL AREA(ACRES) = 49.8 PEAK FLOW RATE(CFS) = 65.72 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.54 FLOW VELOCITY(FEET/SEC.) = 3.36 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 307.00 = 2861.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 49.8 TC(MIN.) = 22.38 PEAK FLOW RATE(CFS) = 65.72 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1501 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * PSP-AREA D * * Q10 * * CLH 2013-02-26 * ************************************************************************** FILE NAME: PSP-D10.DAT TIME/DATE OF STUDY: 16:15 02/26/2013 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 10.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 10.00 1-HOUR INTENSITY(INCH/HOUR) = 1.010 SLOPE OF INTENSITY DURATION CURVE = 0.5806 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 125.00 UPSTREAM ELEVATION(FEET) = 427.90 DOWNSTREAM ELEVATION(FEET) = 426.70 ELEVATION DIFFERENCE(FEET) = 1.20 TC = 0.303*[( 125.00**3)/( 1.20)]**.2 = 5.295 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.134 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8634 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 0.39 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.39 **************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 426.70 DOWNSTREAM(FEET) = 420.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 501.00 CHANNEL SLOPE = 0.0128 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.093 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8570 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 5.86 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.43 AVERAGE FLOW DEPTH(FEET) = 0.10 TRAVEL TIME(MIN.) = 3.43 Tc(MIN.) = 8.73 SUBAREA AREA(ACRES) = 4.06 SUBAREA RUNOFF(CFS) = 10.76 TOTAL AREA(ACRES) = 4.2 PEAK FLOW RATE(CFS) = 11.16 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.15 FLOW VELOCITY(FEET/SEC.) = 3.02 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 403.00 = 626.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 414.20 DOWNSTREAM(FEET) = 413.10 FLOW LENGTH(FEET) = 368.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 6.31 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 11.16 PIPE TRAVEL TIME(MIN.) = 0.97 Tc(MIN.) = 9.70 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 404.00 = 994.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.910 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8556 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.71 SUBAREA RUNOFF(CFS) = 4.26 TOTAL AREA(ACRES) = 5.9 TOTAL RUNOFF(CFS) = 15.41 TC(MIN.) = 9.70 **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 405.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 413.10 DOWNSTREAM(FEET) = 412.70 FLOW LENGTH(FEET) = 141.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 8.72 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 15.41 PIPE TRAVEL TIME(MIN.) = 0.27 Tc(MIN.) = 9.97 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 405.00 = 1135.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 405.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.864 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8552 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.69 SUBAREA RUNOFF(CFS) = 6.59 TOTAL AREA(ACRES) = 8.6 TOTAL RUNOFF(CFS) = 22.00 TC(MIN.) = 9.97 **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 406.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 412.70 DOWNSTREAM(FEET) = 412.30 FLOW LENGTH(FEET) = 151.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 12.45 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 22.00 PIPE TRAVEL TIME(MIN.) = 0.20 Tc(MIN.) = 10.17 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 406.00 = 1286.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 406.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 10 YEAR RAINFALL INTENSITY(INCH/HOUR) = 2.830 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8550 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.38 SUBAREA RUNOFF(CFS) = 3.34 TOTAL AREA(ACRES) = 9.9 TOTAL RUNOFF(CFS) = 25.34 TC(MIN.) = 10.17 ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 9.9 TC(MIN.) = 10.17 PEAK FLOW RATE(CFS) = 25.34 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1501 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * PSP-AREA A * * Q100 * * CLH 2013-02-26 * ************************************************************************** FILE NAME: PSP-A100.DAT TIME/DATE OF STUDY: 11:53 02/26/2013 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5796 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 101.00 TO NODE 102.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 151.00 UPSTREAM ELEVATION(FEET) = 418.00 DOWNSTREAM ELEVATION(FEET) = 415.20 ELEVATION DIFFERENCE(FEET) = 2.80 TC = 0.303*[( 151.00**3)/( 2.80)]**.2 = 5.007 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.750 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8734 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 1.53 TOTAL AREA(ACRES) = 0.26 TOTAL RUNOFF(CFS) = 1.53 **************************************************************************** FLOW PROCESS FROM NODE 102.00 TO NODE 103.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 415.20 DOWNSTREAM(FEET) = 411.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 245.00 CHANNEL SLOPE = 0.0143 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 99.990 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.508 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8694 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 3.51 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.94 AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 2.10 Tc(MIN.) = 7.11 SUBAREA AREA(ACRES) = 0.82 SUBAREA RUNOFF(CFS) = 3.93 TOTAL AREA(ACRES) = 1.1 PEAK FLOW RATE(CFS) = 5.46 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 2.20 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 103.00 = 396.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 103.00 TO NODE 104.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 404.82 DOWNSTREAM(FEET) = 402.76 FLOW LENGTH(FEET) = 212.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 8.3 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.65 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 5.46 PIPE TRAVEL TIME(MIN.) = 0.63 Tc(MIN.) = 7.74 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 608.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 1 ARE: TIME OF CONCENTRATION(MIN.) = 7.74 RAINFALL INTENSITY(INCH/HR) = 5.24 TOTAL STREAM AREA(ACRES) = 1.08 PEAK FLOW RATE(CFS) AT CONFLUENCE = 5.46 **************************************************************************** FLOW PROCESS FROM NODE 801.00 TO NODE 802.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 119.00 UPSTREAM ELEVATION(FEET) = 415.60 DOWNSTREAM ELEVATION(FEET) = 414.00 ELEVATION DIFFERENCE(FEET) = 1.60 TC = 0.303*[( 119.00**3)/( 1.60)]**.2 = 4.854 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.755 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8734 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 0.59 TOTAL AREA(ACRES) = 0.10 TOTAL RUNOFF(CFS) = 0.59 **************************************************************************** FLOW PROCESS FROM NODE 802.00 TO NODE 803.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 414.00 DOWNSTREAM(FEET) = 411.40 CHANNEL LENGTH THRU SUBAREA(FEET) = 181.00 CHANNEL SLOPE = 0.0144 CHANNEL BASE(FEET) = 20.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 1.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.691 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8701 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 2.60 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.75 AVERAGE FLOW DEPTH(FEET) = 0.06 TRAVEL TIME(MIN.) = 1.72 Tc(MIN.) = 6.72 SUBAREA AREA(ACRES) = 0.81 SUBAREA RUNOFF(CFS) = 4.01 TOTAL AREA(ACRES) = 0.9 PEAK FLOW RATE(CFS) = 4.60 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.09 FLOW VELOCITY(FEET/SEC.) = 2.12 LONGEST FLOWPATH FROM NODE 801.00 TO NODE 803.00 = 300.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 803.00 TO NODE 104.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 405.22 DOWNSTREAM(FEET) = 402.76 FLOW LENGTH(FEET) = 246.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 15.0 INCH PIPE IS 9.7 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 5.48 GIVEN PIPE DIAMETER(INCH) = 15.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 4.60 PIPE TRAVEL TIME(MIN.) = 0.75 Tc(MIN.) = 7.47 LONGEST FLOWPATH FROM NODE 801.00 TO NODE 104.00 = 546.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 104.00 IS CODE = 1 ---------------------------------------------------------------------------- >>>>>DESIGNATE INDEPENDENT STREAM FOR CONFLUENCE<<<<< >>>>>AND COMPUTE VARIOUS CONFLUENCED STREAM VALUES<<<<< ============================================================================ TOTAL NUMBER OF STREAMS = 2 CONFLUENCE VALUES USED FOR INDEPENDENT STREAM 2 ARE: TIME OF CONCENTRATION(MIN.) = 7.47 RAINFALL INTENSITY(INCH/HR) = 5.35 TOTAL STREAM AREA(ACRES) = 0.91 PEAK FLOW RATE(CFS) AT CONFLUENCE = 4.60 ** CONFLUENCE DATA ** STREAM RUNOFF Tc INTENSITY AREA NUMBER (CFS) (MIN.) (INCH/HOUR) (ACRE) 1 5.46 7.74 5.245 1.08 2 4.60 7.47 5.353 0.91 *********************************WARNING********************************** IN THIS COMPUTER PROGRAM, THE CONFLUENCE VALUE USED IS BASED ON THE RCFC&WCD FORMULA OF PLATE D-1 AS DEFAULT VALUE. THIS FORMULA WILL NOT NECESSARILY RESULT IN THE MAXIMUM VALUE OF PEAK FLOW. ************************************************************************** RAINFALL INTENSITY AND TIME OF CONCENTRATION RATIO CONFLUENCE FORMULA USED FOR 2 STREAMS. ** PEAK FLOW RATE TABLE ** STREAM RUNOFF Tc INTENSITY NUMBER (CFS) (MIN.) (INCH/HOUR) 1 9.87 7.47 5.353 2 9.97 7.74 5.245 COMPUTED CONFLUENCE ESTIMATES ARE AS FOLLOWS: PEAK FLOW RATE(CFS) = 9.97 Tc(MIN.) = 7.74 TOTAL AREA(ACRES) = 2.0 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 104.00 = 608.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 104.00 TO NODE 105.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 402.76 DOWNSTREAM(FEET) = 400.78 FLOW LENGTH(FEET) = 203.00 MANNING'S N = 0.013 DEPTH OF FLOW IN 24.0 INCH PIPE IS 11.6 INCHES PIPE-FLOW VELOCITY(FEET/SEC.) = 6.64 GIVEN PIPE DIAMETER(INCH) = 24.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 9.97 PIPE TRAVEL TIME(MIN.) = 0.51 Tc(MIN.) = 8.25 LONGEST FLOWPATH FROM NODE 101.00 TO NODE 105.00 = 811.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 105.00 TO NODE 105.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.055 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8677 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.71 SUBAREA RUNOFF(CFS) = 11.89 TOTAL AREA(ACRES) = 4.7 TOTAL RUNOFF(CFS) = 21.85 TC(MIN.) = 8.25 ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 4.7 TC(MIN.) = 8.25 PEAK FLOW RATE(CFS) = 21.85 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1501 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * PSP-AREA B * * Q100 * * CLH 2013-02-26 * ************************************************************************** FILE NAME: PSP-B100.DAT TIME/DATE OF STUDY: 14:04 02/26/2013 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5796 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 201.00 TO NODE 202.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 150.00 UPSTREAM ELEVATION(FEET) = 412.40 DOWNSTREAM ELEVATION(FEET) = 409.50 ELEVATION DIFFERENCE(FEET) = 2.90 TC = 0.303*[( 150.00**3)/( 2.90)]**.2 = 4.952 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.755 USER-SPECIFIED RUNOFF COEFFICIENT = .8734 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 1.42 TOTAL AREA(ACRES) = 0.24 TOTAL RUNOFF(CFS) = 1.42 **************************************************************************** FLOW PROCESS FROM NODE 202.00 TO NODE 203.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 409.50 DOWNSTREAM(FEET) = 407.20 CHANNEL LENGTH THRU SUBAREA(FEET) = 225.00 CHANNEL SLOPE = 0.0102 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 5.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.552 USER-SPECIFIED RUNOFF COEFFICIENT = .8696 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 4.04 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.86 AVERAGE FLOW DEPTH(FEET) = 0.09 TRAVEL TIME(MIN.) = 2.01 Tc(MIN.) = 7.01 SUBAREA AREA(ACRES) = 1.07 SUBAREA RUNOFF(CFS) = 5.17 TOTAL AREA(ACRES) = 1.3 PEAK FLOW RATE(CFS) = 6.58 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.11 FLOW VELOCITY(FEET/SEC.) = 2.36 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 203.00 = 375.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 203.00 TO NODE 204.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 407.20 DOWNSTREAM(FEET) = 405.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 499.00 CHANNEL SLOPE = 0.0044 CHANNEL BASE(FEET) = 0.00 "Z" FACTOR = 50.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 5.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.211 USER-SPECIFIED RUNOFF COEFFICIENT = .8638 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.32 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 1.94 AVERAGE FLOW DEPTH(FEET) = 0.31 TRAVEL TIME(MIN.) = 4.29 Tc(MIN.) = 11.30 SUBAREA AREA(ACRES) = 1.50 SUBAREA RUNOFF(CFS) = 5.46 TOTAL AREA(ACRES) = 2.8 PEAK FLOW RATE(CFS) = 12.04 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.35 FLOW VELOCITY(FEET/SEC.) = 2.01 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 204.00 = 874.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 204.00 TO NODE 205.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 405.00 DOWNSTREAM(FEET) = 401.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 532.00 CHANNEL SLOPE = 0.0070 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.568 USER-SPECIFIED RUNOFF COEFFICIENT = .8602 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 21.62 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.37 AVERAGE FLOW DEPTH(FEET) = 0.56 TRAVEL TIME(MIN.) = 3.74 Tc(MIN.) = 15.04 SUBAREA AREA(ACRES) = 6.20 SUBAREA RUNOFF(CFS) = 19.03 TOTAL AREA(ACRES) = 9.0 PEAK FLOW RATE(CFS) = 31.06 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.66 FLOW VELOCITY(FEET/SEC.) = 2.59 LONGEST FLOWPATH FROM NODE 201.00 TO NODE 205.00 = 1406.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 9.0 TC(MIN.) = 15.04 PEAK FLOW RATE(CFS) = 31.06 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1501 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * PSP-AREA C * * Q100 * * CLH 2013-02-26 * ************************************************************************** FILE NAME: PSP-C100.DAT TIME/DATE OF STUDY: 14:34 02/26/2013 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5796 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0313 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 301.00 TO NODE 302.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 105.00 UPSTREAM ELEVATION(FEET) = 424.30 DOWNSTREAM ELEVATION(FEET) = 423.20 ELEVATION DIFFERENCE(FEET) = 1.10 TC = 0.303*[( 105.00**3)/( 1.10)]**.2 = 4.853 COMPUTED TIME OF CONCENTRATION INCREASED TO 5 MIN. 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.755 USER-SPECIFIED RUNOFF COEFFICIENT = .8734 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 0.77 TOTAL AREA(ACRES) = 0.13 TOTAL RUNOFF(CFS) = 0.77 **************************************************************************** FLOW PROCESS FROM NODE 302.00 TO NODE 303.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 423.20 DOWNSTREAM(FEET) = 417.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 481.00 CHANNEL SLOPE = 0.0123 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.027 USER-SPECIFIED RUNOFF COEFFICIENT = .8676 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 6.61 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.41 AVERAGE FLOW DEPTH(FEET) = 0.11 TRAVEL TIME(MIN.) = 3.32 Tc(MIN.) = 8.32 SUBAREA AREA(ACRES) = 2.61 SUBAREA RUNOFF(CFS) = 11.38 TOTAL AREA(ACRES) = 2.7 PEAK FLOW RATE(CFS) = 12.15 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.16 FLOW VELOCITY(FEET/SEC.) = 3.13 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 303.00 = 586.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 303.00 TO NODE 304.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 417.30 DOWNSTREAM(FEET) = 409.50 CHANNEL LENGTH THRU SUBAREA(FEET) = 704.00 CHANNEL SLOPE = 0.0111 CHANNEL BASE(FEET) = 5.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.025 MAXIMUM DEPTH(FEET) = 1.50 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.959 USER-SPECIFIED RUNOFF COEFFICIENT = .7123 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 20.65 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.76 AVERAGE FLOW DEPTH(FEET) = 0.50 TRAVEL TIME(MIN.) = 4.24 Tc(MIN.) = 12.57 SUBAREA AREA(ACRES) = 5.95 SUBAREA RUNOFF(CFS) = 16.78 TOTAL AREA(ACRES) = 8.7 PEAK FLOW RATE(CFS) = 28.93 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.58 FLOW VELOCITY(FEET/SEC.) = 3.05 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 304.00 = 1290.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 304.00 TO NODE 305.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 409.50 DOWNSTREAM(FEET) = 407.70 CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0054 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.718 USER-SPECIFIED RUNOFF COEFFICIENT = .8611 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 39.06 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.89 AVERAGE FLOW DEPTH(FEET) = 0.40 TRAVEL TIME(MIN.) = 1.44 Tc(MIN.) = 14.01 SUBAREA AREA(ACRES) = 6.33 SUBAREA RUNOFF(CFS) = 20.27 TOTAL AREA(ACRES) = 15.0 PEAK FLOW RATE(CFS) = 49.19 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.46 FLOW VELOCITY(FEET/SEC.) = 4.25 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 305.00 = 1626.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 305.00 TO NODE 306.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 407.70 DOWNSTREAM(FEET) = 404.90 CHANNEL LENGTH THRU SUBAREA(FEET) = 336.00 CHANNEL SLOPE = 0.0083 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) = 5.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.487 USER-SPECIFIED RUNOFF COEFFICIENT = .7991 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 53.84 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.42 AVERAGE FLOW DEPTH(FEET) = 0.46 TRAVEL TIME(MIN.) = 1.64 Tc(MIN.) = 15.65 SUBAREA AREA(ACRES) = 3.33 SUBAREA RUNOFF(CFS) = 9.28 TOTAL AREA(ACRES) = 18.3 PEAK FLOW RATE(CFS) = 58.47 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.48 FLOW VELOCITY(FEET/SEC.) = 3.54 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 306.00 = 1962.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 306.00 TO NODE 307.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 404.90 DOWNSTREAM(FEET) = 399.00 CHANNEL LENGTH THRU SUBAREA(FEET) = 899.00 CHANNEL SLOPE = 0.0066 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 20.000 MANNING'S FACTOR = 0.020 MAXIMUM DEPTH(FEET) = 5.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 3.048 USER-SPECIFIED RUNOFF COEFFICIENT = .6399 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 89.39 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 3.67 AVERAGE FLOW DEPTH(FEET) = 0.64 TRAVEL TIME(MIN.) = 4.09 Tc(MIN.) = 19.73 SUBAREA AREA(ACRES) = 31.45 SUBAREA RUNOFF(CFS) = 61.34 TOTAL AREA(ACRES) = 49.8 PEAK FLOW RATE(CFS) = 119.81 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.75 FLOW VELOCITY(FEET/SEC.) = 3.99 LONGEST FLOWPATH FROM NODE 301.00 TO NODE 307.00 = 2861.00 FEET. ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 49.8 TC(MIN.) = 19.73 PEAK FLOW RATE(CFS) = 119.81 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS ____________________________________________________________________________ **************************************************************************** RATIONAL METHOD HYDROLOGY COMPUTER PROGRAM BASED ON RIVERSIDE COUNTY FLOOD CONTROL & WATER CONSERVATION DISTRICT (RCFC&WCD) 1978 HYDROLOGY MANUAL (c) Copyright 1982-2012 Advanced Engineering Software (aes) (Rational Tabling Version 19.0) Release Date: 06/01/2012 License ID 1501 Analysis prepared by: ************************** DESCRIPTION OF STUDY ************************** * PSP-AREA D * * Q100 * * CLH 2013-02-26 * ************************************************************************** FILE NAME: PSP-D100.DAT TIME/DATE OF STUDY: 15:08 02/26/2013 ---------------------------------------------------------------------------- USER SPECIFIED HYDROLOGY AND HYDRAULIC MODEL INFORMATION: ---------------------------------------------------------------------------- USER SPECIFIED STORM EVENT(YEAR) = 100.00 SPECIFIED MINIMUM PIPE SIZE(INCH) = 18.00 SPECIFIED PERCENT OF GRADIENTS(DECIMAL) TO USE FOR FRICTION SLOPE = 0.90 10-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 2.830 10-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.000 100-YEAR STORM 10-MINUTE INTENSITY(INCH/HOUR) = 4.520 100-YEAR STORM 60-MINUTE INTENSITY(INCH/HOUR) = 1.600 SLOPE OF 10-YEAR INTENSITY-DURATION CURVE = 0.5805893 SLOPE OF 100-YEAR INTENSITY-DURATION CURVE = 0.5796024 COMPUTED RAINFALL INTENSITY DATA: STORM EVENT = 100.00 1-HOUR INTENSITY(INCH/HOUR) = 1.600 SLOPE OF INTENSITY DURATION CURVE = 0.5796 RCFC&WCD HYDROLOGY MANUAL "C"-VALUES USED FOR RATIONAL METHOD NOTE: COMPUTE CONFLUENCE VALUES ACCORDING TO RCFC&WCD HYDROLOGY MANUAL AND IGNORE OTHER CONFLUENCE COMBINATIONS FOR DOWNSTREAM ANALYSES *USER-DEFINED STREET-SECTIONS FOR COUPLED PIPEFLOW AND STREETFLOW MODEL* HALF- CROWN TO STREET-CROSSFALL: CURB GUTTER-GEOMETRIES: MANNING WIDTH CROSSFALL IN- / OUT-/PARK- HEIGHT WIDTH LIP HIKE FACTOR NO. (FT) (FT) SIDE / SIDE/ WAY (FT) (FT) (FT) (FT) (n) === ===== ========= ================= ====== ===== ====== ===== ======= 1 30.0 20.0 0.018/0.018/0.020 0.67 2.00 0.0312 0.167 0.0150 GLOBAL STREET FLOW-DEPTH CONSTRAINTS: 1. Relative Flow-Depth = 0.00 FEET as (Maximum Allowable Street Flow Depth) - (Top-of-Curb) 2. (Depth)*(Velocity) Constraint = 6.0 (FT*FT/S) *SIZE PIPE WITH A FLOW CAPACITY GREATER THAN OR EQUAL TO THE UPSTREAM TRIBUTARY PIPE.* **************************************************************************** FLOW PROCESS FROM NODE 401.00 TO NODE 402.00 IS CODE = 21 ---------------------------------------------------------------------------- >>>>>RATIONAL METHOD INITIAL SUBAREA ANALYSIS<<<<< ============================================================================ ASSUMED INITIAL SUBAREA UNIFORM DEVELOPMENT IS COMMERCIAL TC = K*[(LENGTH**3)/(ELEVATION CHANGE)]**.2 INITIAL SUBAREA FLOW-LENGTH(FEET) = 125.00 UPSTREAM ELEVATION(FEET) = 427.90 DOWNSTREAM ELEVATION(FEET) = 426.70 ELEVATION DIFFERENCE(FEET) = 1.20 TC = 0.303*[( 125.00**3)/( 1.20)]**.2 = 5.295 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 6.534 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8728 SOIL CLASSIFICATION IS "A" SUBAREA RUNOFF(CFS) = 0.63 TOTAL AREA(ACRES) = 0.11 TOTAL RUNOFF(CFS) = 0.63 **************************************************************************** FLOW PROCESS FROM NODE 402.00 TO NODE 403.00 IS CODE = 51 ---------------------------------------------------------------------------- >>>>>COMPUTE TRAPEZOIDAL CHANNEL FLOW<<<<< >>>>>TRAVELTIME THRU SUBAREA (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 426.70 DOWNSTREAM(FEET) = 420.30 CHANNEL LENGTH THRU SUBAREA(FEET) = 501.00 CHANNEL SLOPE = 0.0128 CHANNEL BASE(FEET) = 25.00 "Z" FACTOR = 0.000 MANNING'S FACTOR = 0.015 MAXIMUM DEPTH(FEET) = 100.00 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 5.077 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8678 SOIL CLASSIFICATION IS "A" TRAVEL TIME COMPUTED USING ESTIMATED FLOW(CFS) = 9.72 TRAVEL TIME THRU SUBAREA BASED ON VELOCITY(FEET/SEC.) = 2.89 AVERAGE FLOW DEPTH(FEET) = 0.13 TRAVEL TIME(MIN.) = 2.89 Tc(MIN.) = 8.18 SUBAREA AREA(ACRES) = 4.06 SUBAREA RUNOFF(CFS) = 17.89 TOTAL AREA(ACRES) = 4.2 PEAK FLOW RATE(CFS) = 18.52 END OF SUBAREA CHANNEL FLOW HYDRAULICS: DEPTH(FEET) = 0.20 FLOW VELOCITY(FEET/SEC.) = 3.79 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 403.00 = 626.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 403.00 TO NODE 404.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 414.20 DOWNSTREAM(FEET) = 413.10 FLOW LENGTH(FEET) = 368.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 10.48 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 18.52 PIPE TRAVEL TIME(MIN.) = 0.59 Tc(MIN.) = 8.77 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 404.00 = 994.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 404.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.878 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8669 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.71 SUBAREA RUNOFF(CFS) = 7.23 TOTAL AREA(ACRES) = 5.9 TOTAL RUNOFF(CFS) = 25.75 TC(MIN.) = 8.77 **************************************************************************** FLOW PROCESS FROM NODE 404.00 TO NODE 405.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 413.10 DOWNSTREAM(FEET) = 412.70 FLOW LENGTH(FEET) = 141.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 14.57 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 25.75 PIPE TRAVEL TIME(MIN.) = 0.16 Tc(MIN.) = 8.93 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 405.00 = 1135.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 405.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.827 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8667 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 2.69 SUBAREA RUNOFF(CFS) = 11.25 TOTAL AREA(ACRES) = 8.6 TOTAL RUNOFF(CFS) = 37.00 TC(MIN.) = 8.93 **************************************************************************** FLOW PROCESS FROM NODE 405.00 TO NODE 406.00 IS CODE = 41 ---------------------------------------------------------------------------- >>>>>COMPUTE PIPE-FLOW TRAVEL TIME THRU SUBAREA<<<<< >>>>>USING USER-SPECIFIED PIPESIZE (EXISTING ELEMENT)<<<<< ============================================================================ ELEVATION DATA: UPSTREAM(FEET) = 412.70 DOWNSTREAM(FEET) = 412.30 FLOW LENGTH(FEET) = 151.00 MANNING'S N = 0.013 ASSUME FULL-FLOWING PIPELINE PIPE-FLOW VELOCITY(FEET/SEC.) = 20.94 PIPE FLOW VELOCITY = (TOTAL FLOW)/(PIPE CROSS SECTION AREA) GIVEN PIPE DIAMETER(INCH) = 18.00 NUMBER OF PIPES = 1 PIPE-FLOW(CFS) = 37.00 PIPE TRAVEL TIME(MIN.) = 0.12 Tc(MIN.) = 9.05 LONGEST FLOWPATH FROM NODE 401.00 TO NODE 406.00 = 1286.00 FEET. **************************************************************************** FLOW PROCESS FROM NODE 406.00 TO NODE 406.00 IS CODE = 81 ---------------------------------------------------------------------------- >>>>>ADDITION OF SUBAREA TO MAINLINE PEAK FLOW<<<<< ============================================================================ 100 YEAR RAINFALL INTENSITY(INCH/HOUR) = 4.789 COMMERCIAL DEVELOPMENT RUNOFF COEFFICIENT = .8665 SOIL CLASSIFICATION IS "A" SUBAREA AREA(ACRES) = 1.38 SUBAREA RUNOFF(CFS) = 5.73 TOTAL AREA(ACRES) = 9.9 TOTAL RUNOFF(CFS) = 42.73 TC(MIN.) = 9.05 ============================================================================ END OF STUDY SUMMARY: TOTAL AREA(ACRES) = 9.9 TC(MIN.) = 9.05 PEAK FLOW RATE(CFS) = 42.73 ============================================================================ ============================================================================ END OF RATIONAL METHOD ANALYSIS APPENDIX C INLET CALCULATIONS Inlet103Q10.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 3.3700 cfs Coefficient ..................... 0.6100 Height .......................... 4.0000 in Computed Results: Depth of Flow ................... 1.9313 in Full Flow ....................... 10.0449 cfs Velocity ........................ 1.3087 fps Width ........................... 192.0000 in Area ............................ 5.3333 ft2 Perimeter ....................... 200.0000 in Wet Perimeter ................... 195.8626 in Wet Area ........................ 2.5751 ft2 Percent Full .................... 48.2826 % Page 1 Inlet103Q100.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 5.4600 cfs Coefficient ..................... 0.6100 Height .......................... 12.0000 in Computed Results: Depth of Flow ................... 2.6642 in Full Flow ....................... 52.1947 cfs Velocity ........................ 1.5371 fps Width ........................... 192.0000 in Area ............................ 16.0000 ft2 Perimeter ....................... 216.0000 in Wet Perimeter ................... 197.3283 in Wet Area ........................ 3.5522 ft2 Percent Full .................... 22.2013 % Page 1 Inlet105Q10.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 7.2200 cfs Coefficient ..................... 0.6100 Height .......................... 4.0000 in Computed Results: Depth of Flow ................... 3.2096 in Full Flow ....................... 10.0449 cfs Velocity ........................ 1.6871 fps Width ........................... 192.0000 in Area ............................ 5.3333 ft2 Perimeter ....................... 200.0000 in Wet Perimeter ................... 198.4193 in Wet Area ........................ 4.2795 ft2 Percent Full .................... 80.2408 % Page 1 Inlet105Q100.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 11.8900 cfs Coefficient ..................... 0.6100 Height .......................... 12.0000 in Computed Results: Depth of Flow ................... 4.4759 in Full Flow ....................... 52.1947 cfs Velocity ........................ 1.9923 fps Width ........................... 192.0000 in Area ............................ 16.0000 ft2 Perimeter ....................... 216.0000 in Wet Perimeter ................... 200.9519 in Wet Area ........................ 5.9679 ft2 Percent Full .................... 37.2996 % Page 1 Inlet205Q10.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 18.5000 cfs Coefficient ..................... 0.6100 Height .......................... 18.0000 in Computed Results: Depth of Flow ................... 8.4377 in Full Flow ....................... 57.6425 cfs Velocity ........................ 2.7354 fps Width ........................... 115.4200 in Area ............................ 14.4275 ft2 Perimeter ....................... 151.4200 in Wet Perimeter ................... 132.2954 in Wet Area ........................ 6.7631 ft2 Percent Full .................... 46.8762 % Page 1 Inlet205Q100.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 31.0600 cfs Coefficient ..................... 0.6100 Height .......................... 18.0000 in Computed Results: Depth of Flow ................... 11.9191 in Full Flow ....................... 57.6425 cfs Velocity ........................ 3.2512 fps Width ........................... 115.4200 in Area ............................ 14.4275 ft2 Perimeter ....................... 151.4200 in Wet Perimeter ................... 139.2583 in Wet Area ........................ 9.5535 ft2 Percent Full .................... 66.2174 % Page 1 Inlet307Q10.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 65.7200 cfs Coefficient ..................... 0.6100 Height .......................... 18.0000 in Computed Results: Depth of Flow ................... 12.4779 in Full Flow ....................... 113.8667 cfs Velocity ........................ 3.3265 fps Width ........................... 228.0000 in Area ............................ 28.5000 ft2 Perimeter ....................... 264.0000 in Wet Perimeter ................... 252.9557 in Wet Area ........................ 19.7566 ft2 Percent Full .................... 69.3214 % Page 1 Inlet307Q100.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 119.8100 cfs Coefficient ..................... 0.6100 Height .......................... 24.0000 in Computed Results: Depth of Flow ................... 18.6210 in Full Flow ....................... 175.3092 cfs Velocity ........................ 4.0637 fps Width ........................... 228.0000 in Area ............................ 38.0000 ft2 Perimeter ....................... 276.0000 in Wet Perimeter ................... 265.2420 in Wet Area ........................ 29.4833 ft2 Percent Full .................... 77.5876 % Page 1 Inlet403Q10.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 11.1600 cfs Coefficient ..................... 0.6100 Height .......................... 12.0000 in Computed Results: Depth of Flow ................... 5.5364 in Full Flow ....................... 35.6120 cfs Velocity ........................ 2.2158 fps Width ........................... 131.0000 in Area ............................ 10.9167 ft2 Perimeter ....................... 155.0000 in Wet Perimeter ................... 142.0728 in Wet Area ........................ 5.0366 ft2 Percent Full .................... 46.1366 % Page 1 Inlet403Q100.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 18.5200 cfs Coefficient ..................... 0.6100 Height .......................... 12.0000 in Computed Results: Depth of Flow ................... 8.8812 in Full Flow ....................... 29.0876 cfs Velocity ........................ 2.8064 fps Width ........................... 107.0000 in Area ............................ 8.9167 ft2 Perimeter ....................... 131.0000 in Wet Perimeter ................... 124.7623 in Wet Area ........................ 6.5992 ft2 Percent Full .................... 74.0096 % Page 1 Inlet404Q10.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 4.2600 cfs Coefficient ..................... 0.6100 Height .......................... 4.0000 in Computed Results: Depth of Flow ................... 2.9133 in Full Flow ....................... 6.8535 cfs Velocity ........................ 1.6074 fps Width ........................... 131.0000 in Area ............................ 3.6389 ft2 Perimeter ....................... 139.0000 in Wet Perimeter ................... 136.8267 in Wet Area ........................ 2.6503 ft2 Percent Full .................... 72.8333 % Page 1 Inlet404Q100.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 7.2300 cfs Coefficient ..................... 0.6100 Height .......................... 12.0000 in Computed Results: Depth of Flow ................... 4.7439 in Full Flow ....................... 29.0876 cfs Velocity ........................ 2.0511 fps Width ........................... 107.0000 in Area ............................ 8.9167 ft2 Perimeter ....................... 131.0000 in Wet Perimeter ................... 116.4878 in Wet Area ........................ 3.5250 ft2 Percent Full .................... 39.5324 % Page 1 Inlet405Q10.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 3.0000 cfs Coefficient ..................... 0.6100 Height .......................... 4.0000 in Computed Results: Depth of Flow ................... 2.1895 in Full Flow ....................... 7.4081 cfs Velocity ........................ 1.3934 fps Width ........................... 141.6000 in Area ............................ 3.9333 ft2 Perimeter ....................... 149.6000 in Wet Perimeter ................... 145.9789 in Wet Area ........................ 2.1530 ft2 Percent Full .................... 54.7365 % Page 1 Inlet405Q100.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 5.1250 cfs Coefficient ..................... 0.6100 Height .......................... 12.0000 in Computed Results: Depth of Flow ................... 3.1289 in Full Flow ....................... 38.4936 cfs Velocity ........................ 1.6657 fps Width ........................... 141.6000 in Area ............................ 11.8000 ft2 Perimeter ....................... 165.6000 in Wet Perimeter ................... 147.8577 in Wet Area ........................ 3.0767 ft2 Percent Full .................... 26.0738 % Page 1 Inlet406Q10.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 3.3800 cfs Coefficient ..................... 0.6100 Height .......................... 4.0000 in Computed Results: Depth of Flow ................... 1.9351 in Full Flow ....................... 10.0449 cfs Velocity ........................ 1.3100 fps Width ........................... 192.0000 in Area ............................ 5.3333 ft2 Perimeter ....................... 200.0000 in Wet Perimeter ................... 195.8702 in Wet Area ........................ 2.5802 ft2 Percent Full .................... 48.3780 % Page 1 Inlet406Q100.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 5.7300 cfs Coefficient ..................... 0.6100 Height .......................... 12.0000 in Computed Results: Depth of Flow ................... 2.7513 in Full Flow ....................... 52.1947 cfs Velocity ........................ 1.5620 fps Width ........................... 192.0000 in Area ............................ 16.0000 ft2 Perimeter ....................... 216.0000 in Wet Perimeter ................... 197.5025 in Wet Area ........................ 3.6684 ft2 Percent Full .................... 22.9273 % Page 1 Inlet803Q10.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 2.4400 cfs Coefficient ..................... 0.6100 Height .......................... 4.0000 in Computed Results: Depth of Flow ................... 1.3219 in Full Flow ....................... 12.8438 cfs Velocity ........................ 1.0827 fps Width ........................... 245.5000 in Area ............................ 6.8194 ft2 Perimeter ....................... 253.5000 in Wet Perimeter ................... 248.1437 in Wet Area ........................ 2.2536 ft2 Percent Full .................... 33.0469 % Page 1 Inlet803Q100.txt Weir Calculator Given Input Data: Weir Type ....................... Rectangular Equation ........................ Suppressed Solving for ..................... Depth of Flow Flowrate ........................ 4.6000 cfs Coefficient ..................... 0.6100 Height .......................... 12.0000 in Computed Results: Depth of Flow ................... 2.1605 in Full Flow ....................... 60.2142 cfs Velocity ........................ 1.3842 fps Width ........................... 221.5000 in Area ............................ 18.4583 ft2 Perimeter ....................... 245.5000 in Wet Perimeter ................... 225.8210 in Wet Area ........................ 3.3233 ft2 Percent Full .................... 18.0042 % Page 1 APPENDIX D HYDROLOGY MAP